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Abstract

The automotive industry has increasingly adopted computer technology to enhance the

safety and efficiency of vehicles. Using sensors and electronic control systems, vehicles

can become partially or fully automated, taking only high-level instructions from the

driver and making the necessary driving decisions themselves. Through communication

over a wireless (vehicular) network, automated vehicles can cooperate by sharing sensor

information and coordinating their driving decisions with each other in order to improve

the safety and efficiency of driving. However, the problem of having automated vehicles

cooperate in a safe, distributed manner is mostly unsolved. One of the biggest challenges

is to coordinate safety-critical driving decisions over a wireless network in the presence

of omission failures, messages being lost in transmission. Many existing cooperative

driving solutions are unsuitable for fully automated driving, since they do not tolerate

omission failures and rely on a human driver to intervene. Other solutions rely on the

network to have a bounded number of omission failures, a dangerous assumption in an

environment as dynamic as that of vehicular networks.

Omission failures are a common problem in networked systems and are often dealt

with through acknowledgements, receipt confirmations that allow senders to confirm

successful delivery of a message to a communication group. An application can pro-
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ceed if communication is successfully acknowledged, and adapt otherwise, taking into

account possible failure scenarios that could have occurred. However, in cooperative

automated driving applications, communication groups change with the movements of

vehicles and group membership cannot be known reliably in the presence of omission

failures. Without a reliable view of the communication group, acknowledgements are

insufficient to confirm successful delivery. Fortunately, as this thesis will show, a com-

bination of communication and sensors can be used to create a membership view that

enables reliable success confirmation for communication to geographically-defined groups

of vehicles, even in the presence of unbounded omission failures and inaccurate sensors.

This thesis introduces the Vertigo communication model, which defines a spatio-

temporal model of group membership, and the interface to a group communication

system (GCS), a building block for distributed applications which offers many-to-many

communication services. In the Vertigo model, the GCS offers a geocast operation for

sending a message to, and gathering responses from, all vehicles that are present in a

given target area at a given target time, and reliably confirms successful delivery when-

ever possible. Applications can proceed if success is confirmed, and adapt to possible

failure scenarios in the absence of confirmation. The feasibility of implementing the

model is shown through an implementation using sensing and communication capabili-

ties that are common in automated vehicles. The applicability of the Vertigo model is

demonstrated through the implementation of a safe, distributed coordination protocol

that uses the model. Simulations show that even with limited sensing capabilities, the

Vertigo implementation can achieve a rate of success that is sufficiently high for the

coordination protocol to significantly outperform a traditional traffic management ap-

proach. These results show the Vertigo model as a viable solution for implementing a

safe, efficient, cooperative automated driving system.
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Chapter 1

Introduction

This thesis presents Vertigo, a real-time vehicular group communication model for co-

operative automated driving applications, and its implementation. Vertigo provides au-

tomated vehicles with the ability to safely coordinate their decisions with other vehicles

through a communication model that offers geocast communication with reliable success

confirmation. This chapter describes the motivation for the work and the contributions

of this thesis, as well as a road map for the remainder of the thesis.

1.1 Motivation

Automated driving is a development that could have significant impact on transporta-

tion. Traffic jams and accidents could be dramatically reduced, people of all ages and

abilities will be able to drive, driverless taxis could become cheap and abundant, and

private vehicles could pick up and drop off their owners before parking in compact car

parks. Developments in automated driving are moving quickly, boosted by the DARPA

grand challenge [Urmson 08], Google’s autonomous car [Levinson 11], academia [Luet-
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tel 12], and car manufacturers [Jaynes 13]. Research vehicles can drive automatically

through cities and on highways, so far with an excellent safety record.

At present, most automated vehicles have been strictly autonomous. They make

driving decisions based purely on information from their own sensors, which may be

noisy, limited in range, and difficult to process [Urmson 08]. Vehicular networks could

enable automated vehicles to cooperate by announcing their presence over the network

and sharing sensor information, as well as coordinating driving decisions with each

other [Tsugawa 02]. Cooperation can make automated driving safer and more efficient,

since cooperative vehicles can plan their actions prior to observing each other on sensors,

and do not have to rely on noisy sensor data to detect other vehicles or their intentions.

Cooperative automated vehicles form a distributed system in which vehicles need

to achieve common goals, while having only partial knowledge of each other’s state.

Distributed systems are well-studied in environments such as wired networks [Lynch 96],

the Internet [Steen 12], and sensor networks [Hadim 06], but vehicles operate in a very

different environment and have a very different set of requirements. Controlling a vehicle

requires decision algorithms that are both time-critical, meaning that the decision is

made before a deadline, and safety-critical, meaning that the decision may never lead to

a violation of safety constraints. However, the communication channel between vehicles

is unreliable. Unbounded omission failures can occur with probability greater than 0.

This problem is left unaddressed by existing communication solutions for automated

vehicles that either assume a communication channel with a bounded number of omission

failures [Nett 03], provide only probabilistic guarantees [Ros 09], or remove vehicles that

fail to communicate from the system [Maxemchuk 07]. A pure communication solution

that can be relied upon by safety-critical applications is impossible under unbounded

omission failures as messages may not arrive, and acknowledgements are ineffective, as

2



the group of intended receivers may not be known. Fortunately, as this thesis will show,

a combination of sensors and communication is sufficient for implementing safe decision

algorithms, even in the presence of unbounded omission failure and inaccurate sensors,

through the use of the Vertigo communication model.

1.2 Group Communication for Cooperative Automated Cars

To simplify the development of distributed systems, an often applied technique is a

group communication system (GCS) [Chockler 01]. A GCS is middleware that provides

many-to-many communication services with certain guarantees to applications in terms

of ordering and message delivery. A central component of a GCS is a membership

service that provides a view of membership of a communication group. The GCS offers

guarantees for communication operations within a particular membership view.

This thesis introduces a new model for group communication and membership that

specifically addresses communication between cooperative automated vehicles. In par-

ticular, it provides a method of performing geocast, broadcast to all nodes within a

geographic area, with safety-critical, time-critical success confirmation. The model is

designed to bridge the gap between application requirements (safe progress) on the one

hand, and the abilities of automated vehicles (sensors and communication) and inherent

limitations imposed by vehicular networks and distributed systems (unreliability, delay)

on the other. The combined group communication and membership model are referred

to as the Vertigo model, which stands for Vehicular, Real-Time Group Communication

model.
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1.3 Reliable, Spatio-temporal Membership

The common way of representing a membership view for a GCS is as a set of node

identifiers (members) with a version number [Chockler 01]. The Vertigo model uses

geographically-defined communication groups. A membership view is represented as a

tuple of a set of identifiers M , an area A, and a point in time t, denoted M(M,A, t).

The meaning of the tuple, and simultaneously the guarantee that an implementation of

the Vertigo model must offer with regards to tuples, is that the identifier of any vehicle

that is present in the membership area A at the membership time t is in the set of

identifiers (members) M . This guarantee is central to the Vertigo model. It follows

from the guarantee that if a vehicle sends a message and receives a response from all

members in M , then it knows that all vehicles in area A at time t have been reached.

The guarantee can be provided with safety-critical reliability in spite of communication

delay, inaccurate and incomplete sensor data, and unreliable communication.

Membership tuples can be formed incrementally. This process is performed by de-

caying and merging tuples. Decay shifts the membership time forward by δ seconds.

To preserve the guarantee that any vehicle in the membership area at the membership

time is in the set of members, the membership area is reduced in size to exclude any

point that vehicles could have reached if they had driven into the area at maximum

speed for δ seconds. Merging combines two tuples from the same time, taking the union

of the membership sets and areas. For any two tuples, the older tuple can be decayed

to the membership time of the younger tuple and subsequently merged, which allows

incremental construction of tuples from an arbitrary set of smaller tuples.

The elementary tuples from which larger tuples can be constructed can be formed

reliably using sensors. The implementation of the membership service uses LIDAR to
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establish an empty area A around a vehicle i at time t that is reduced in size to account

for worst-case sensor inaccuracy bound. From the area that is empty except for the

vehicle itself, a tuple M({i}, A, t) is constructed, which is then communicated to other

vehicles. To form a membership view, vehicles merge tuples generated using their own

sensors with those received from other vehicles until a tuple is formed that covers a given

set of identifiers or a given area.

Membership tuples provide a unique ability for applications to reason about the state

of all vehicles in an area Atarget at time ttarget. A membership tuple M(M,A, ttarget),

whose membership area A contains Atarget, is effectively a proof of the completeness of

M as a superset of the identifiers of vehicles in area Atarget at time ttarget. Anything that

holds true for all vehicles whose identifier is in M , must also hold true for all vehicles

in Atarget at time ttarget. This property of membership tuples is used in the Vertigo

communication model to confirm that a message is delivered to all vehicles in a given

target area at a given target time.

1.4 Geocast with Reliable Success Confirmation

The group communication model of Vertigo is defined as an API for geocast with feed-

back. The geocast operation takes a message, a target area Atarget, and a set of time

constraints as parameters. The time constraints define when the message should be de-

livered to applications, when feedback on success of the geocast should be provided to

the application, and the target time defines the set of intended receivers as all vehicles

present in the target area at the target time.

The geocast operation disseminates the message to all vehicles that might be in a

target area Atarget at a target time ttarget. When the message is received by a vehicle, it is
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delivered to an application, which can then decide to respond. Responses are sent back to

the sender of the geocast. Feedback on the success of the geocast is provided to the sender

at the configured time and contains the set of responders R and a membership tuple

M(M,A, ttarget). Success is reliably confirmed if R ⊇M ∧A ⊇ Atarget, meaning the set

of confirmed responders is a superset of the vehicle in area Atarget at ttarget. Applications

using the geocast can adapt to whether or not communication was successful. In safety-

critical applications, absence of success confirmation should be treated as a failure.

The implementation of the communication model uses an ad-hoc network interface

based on 802.11p [IEEE 10]. The geocast message is broadcast over the ad-hoc network

and received by vehicles that are present in the delivery area that is attached to the

message. The delivery area is derived from the target area by expanding it to anticipate

the effects of decay. The delivery area needs to be big enough such that all vehicles that

will be in the target area at the target time are already in the delivery area at the start

of the geocast. Responses to the geocast are sent back over the ad-hoc network using

unicast, and membership information is disseminated using beaconing.

1.5 Crossing an Intersection using Vertigo

To demonstrate the applicability of the Vertigo model to the problem of cooperative

automated driving, a coordination protocol that uses Vertigo is implemented. The pro-

tocol uses a road network model that is based on tracks, interconnected line strings that

vehicles follow. Where two tracks cross, a conflict area exists, and mutual exclusion

needs to be guaranteed for conflict areas. Once within a certain distance of a set of

conflict areas, a vehicle tries to obtain an allocation that allows entry into the conflict

areas during a specific time frame. To do so, a vehicle sends an allocation request using
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Vertigo to an area containing all vehicles that might be trying to obtain an allocation

for the conflict area at the same time or already have one. Receivers of the request send

back a response, which indicates whether they reject, accept, or tentatively accept the

allocation. Tentative responses create a distributed dependency graph between alloca-

tions, determining in which order vehicles can pass a conflict area. If all vehicles accept

a request and successful communication can be confirmed using the Vertigo model, the

sender can proceed into the conflict areas, once it has confirmed that all of the vehicles

on which its allocation depends have moved past the conflict area or are no longer in the

area at all. Membership can be used to reliably detect the absence of a vehicle in case

of omission failures. The correctness of the protocol is verified to demonstrate that the

Vertigo model can indeed support safe, distributed coordination protocols.

1.6 Evaluation

The implementations of the coordination protocol and Vertigo are evaluated using a

novel simulator for cooperative automated driving scenarios. The simulator provides

simulation of GPS and LIDAR, and uses SWANS [Barr 05] to simulate a wireless ad-hoc

network between the vehicles, and the Intelligent Driver Model [Treiber 13] to control

their velocities.

Neither the Vertigo implementation, nor the coordination protocol can be studied in

isolation. Progress in the coordination protocol can be quantified as the rate at which

vehicles move through the scenario, which directly depends on the rate at which Vertigo

confirms successful delivery. At the same time, the success rate of Vertigo depends on

the positions and actions of vehicles that result from the coordination protocol and the

scenario. Additionally, using a safe coordination protocol is essential to the evaluation

7



of Vertigo, since LIDAR could not be correctly simulated if vehicles were ever allowed to

overlap (crash). The protocol also generates a realistic usage pattern of Vertigo queries.

The Vertigo implementation and coordination protocol are therefore evaluated in tandem

by using them to manage a four-way intersection.

Through a series of parameter studies, bounds on position inaccuracy, LIDAR range,

and traffic density, are found representing the worst-case conditions under which Vertigo

can achieve a success rate that still allows the coordination protocol to maintain a

high rate of traffic. Position inaccuracy of up to 3m is shown to be tolerable, which

is much more permissive than what is normally required for automated vehicles (less

than 0.1m) [de Nooij 10] and state-of-the-art positioning for automated vehicles achieve

much greater accuracy [Elkaim 08]. Thanks to the cooperative nature of the membership

service, a maximum LIDAR range as short as 15m is sufficient to allow progress over

the intersection at a reduced rate of traffic, while a maximum range of 25m is sufficient

for achieving maximal traffic rates. Both ranges fall well within the specifications of

LIDARs for automated vehicles [Buehler 09].

Vertigo scales to high traffic densities and is only limited by the rate at which vehicles

can cross the intersection. The cooperative automated vehicles using Vertigo achieve a

maximum throughput on the intersection that lies roughly 25% higher than that of

ordinary traffic lights. These results show the feasibility of building an implementation

of the Vertigo model that can be used to solve a real cooperative automated driving

problem in a way that guarantees safety, while also improving efficiency.
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1.7 Philosophy

Over the course of the research that leads to a thesis, a question worth asking is: ’What

is Computer Science?’. The way in which science is performed is determined by the

philosophy of those performing it, and thus is core to the motivation of the way in which

this and all other research is performed. The insights in this section are neither new nor

extraordinary, but they emphasize how the contributions of this thesis should be viewed.

What puts Computer Science apart from most other fields, is that its subjects of

study are man-made. There was no universal process that led to all computer systems.

Instead, every system is individually crafted. This might prevent us from ever finding

simple models that are common to all systems and being able to understand their be-

haviour in a fundamental way. However, the fact that computer systems are man-made

provides us with the possibility of reversing the process: to develop systems around

simple models that help us reason about them.

When entering into a new class of problems, such as cooperation between auto-

mated vehicles, Computer Science should search for models that provide an appropriate

mapping between the reality of the environment and the functions required to address

problems from the problem space, such as safety under unbounded communication fail-

ure. Whether a model truly has merit, either by being used in real-world systems or by

inspiring other models, will only be determined by time. However, a basic test of legiti-

macy can be performed by demonstrating that it is feasible to implement and applicable

to the problem space. Feasibility can be demonstrated through an implementation of the

model that is able to fulfil its requirements. In the particular case of cooperative auto-

mated driving, feasibility also concerns the ability to function in a physical environment,

as the computational environment (e.g. the network topology) is directly influenced by
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the physical environment (e.g. cars moving). Applicability can be demonstrated through

an implementation of one or more algorithms that use the model to solve a real problem

from the problem space that the model addresses.

This thesis introduces a new group communication model for addressing coopera-

tive automated driving problems, and validates it by demonstrating its feasibility and

applicability. Feasibility is shown by providing an implementation of the model that

achieves a high rate of success using basic network and sensor interfaces. Applicability

is shown by providing an implementation of a cooperative automated driving algorithm

that uses the model to cooperate in a way that guarantees safety using the properties of

the model, while outperforming a traditional traffic management approach.

1.8 Roadmap

The remainder of this thesis has the following structure:

� Chapter 2 discusses the state-of-the-art in cooperative automated driving and com-

munication systems in support of it.

� Chapter 3 derives and defines the Vertigo model comprising a membership and

group communication model.

� Chapter 4 presents a set of protocols and algorithms to implement the Vertigo

model.

� Chapter 5 introduces a coordination protocol implemented using the Vertigo model

to safely coordinate intersection crossings in the presence of omission failures.

� Chapter 6 shows the performance of the Vertigo implementation and the coordina-

tion protocol in an intersection management scenario and finds bounds on sensor
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and communication capabilities, and traffic rates under which the implementation

can achieve progress.

� Chapter 7 concludes the thesis.

11



Chapter 2

Related Work

The Vertigo communication model addresses a need in cooperative automated driving

for reliable communication in vehicular networks through a novel group communication

model. This chapter discusses the state of the art in each area and the gaps left by

existing solutions.

2.1 Cooperative Automated Driving

Cooperative automated driving is the use of communication between vehicles to facilitate

and enhance automated driving through cooperation [Tsugawa 02]. An (uncooperative)

automated vehicle might be capable of driving autonomously, but is limited in its world

knowledge to what it can gather from its sensors, and in its actions to what it can confirm

as safe without knowing the intentions of other vehicles. Cooperative automated vehicles

do not have such limitations, since they communicate sensor data and intentions over a

vehicular network, and coordinate their driving decisions using distributed algorithms.

Two of the most frequently studied cooperative driving scenarios are highways and
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intersections. Of key interest are the problems of merging onto a lane safely, joining and

leaving platoons, and crossing a road safely. These are complex interactions between

groups of vehicles, each of which needs to participate to ensure the overall safety of the

system is guaranteed.

2.1.1 Automated Highway Systems

An Automated Highway System (AHS) comprises a set of technologies that together

facilitate automated control of vehicles on a highway. The primary mode of driving

on a highway is to follow preceding vehicles, keeping roughly the same speed. Human

drivers are not very good at performing this task with global efficiency, because their

view is limited to the vehicle directly ahead [Van den Broek 10]. It is often hard to tell

whether a vehicle will accelerate or decelerate when no knowledge of its predecessors is

available. This leads to poor decisions, which may result in ghost traffic jams [Ploeg 11],

and necessitates greater distances between vehicles, leading to reduced highway capac-

ity. Automated highway systems can overcome these problems by communicating the

state and intentions of vehicles over greater distances at low latencies, and using the

information as input into the control system.

The construct most commonly applied is that of a platoon. A platoon is a line

of cars that stay within a certain distance of each other while driving and stay on

the same lane. Platoons have been studied most prominently by the California PATH

project [Shladover 08]. The project had several demonstrations of platoons on highways.

Longitudal control (in the forward direction) is based on forward-looking radar and radio

communication, while magnetic tracks are used to guide vehicles laterally. Communi-

cation is used to obtain reliable velocity and acceleration values from neighbours, such

that the gaps between vehicles can be minimized. Communication failures are dealt
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with by increasing the gap, and falling back to radar as the primary source of distance

information. Other work in the PATH project shows how vehicles can leave or join a

platoon in the presence of other platoons [Horowitz 04]. The action is coordinated by

platoon leaders, which instruct other vehicles in the platoon to choose a certain align-

ment. However, communication reliability is not addressed in this protocol, nor has it

been demonstrated in practice. Another major platooning project is SARTRE, which

demonstrated road trains in which only the first vehicle is driven manually and the other

vehicles simply repeat its actions obtained from beacons [Chan 11]. Communication fail-

ures are detectable as missing beacons, but failures are ultimately dealt with by passing

control back to a human driver.

Cooperative Adaptive Cruise Control (CACC) is a weaker notion of a platoon, but

one that is possible using today’s technologies [Bu 10]. CACC is an extension of Adaptive

Cruise Control (ACC), which uses radar to adapt the cruise control speed of the vehicle

to the speed of the vehicle in front. There is some delay before ACC software can reliably

determine that the vehicle in front has started accelerating again after braking. Several

rounds of radar measurements may be required to confirm the distance is growing. The

effect of a single vehicle braking can therefore cause vehicles behind it to brake longer,

which can perturbate and cause a traffic jam. CACC solves this problem by providing

the cruise control software with recent information on the state and intentions of its

predecessors through wireless communication. The controller can then know with a

delay of at most one beaconing interval when vehicles in front of it start accelerating.

CACC controllers can create a platoon that is string-stable [Ploeg 11], meaning the

effects of acceleration and deceleration do not perturbate. CACC has been shown to

work even if only part of the vehicles support it, and can also be benefial as a pure

driver assistance system [Van den Broek 10]. There have also been demonstrations of
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CACC with vehicles and software from many different vendors in the Grand Cooperative

Driving Challenge [Ploeg 12]. CACC is by far the most practical and mature solution

to platooning, but it is also technically limited. It does not create a coherent structure

which would allow merging operations or create highly compact platoons, and CACC

controllers do not offer any safety guarantees. The driver is expected to intervene in

worst-case scenarios.

A Cohort is a formalized notion of a platoon [Le Lann 11]. It requires a reliable

neighbour-to-neighbour (N2N) channel that can be implemented in hardware through

unidirectional antennas, accurate positioning, and forward-looking radar. The N2N

channel combined with accurate positioning can provide the same function as the radar,

providing functional redundancy and robustness to a single hardware failure. When a

telemetry or communication failure occurs, cohorts can split to preserve the integrity of

the cohort. A cohort imposes a geometric and network topological structure to a line of

vehicles on a lane, but does not impose a particular coordination strategy. Instead, it

provides a structure for implementing safe coordination algorithms using reliable com-

munication primitives.

The cohort concept is complemented by a group structure for interactions between

cohorts. Groups function like roles in a coordination scenario. Membership of a group

is based on scenario-specific, ad-hoc conditions, such as receiving a message or deciding

participation in the scenario based on position. Groups can be used for defining, reason-

ing about, and verifying communication protocols. The Zebra protocol suite presented

in [Le Lann 12] supports lane changes in cohorts. The source vehicle and group of eligible

receivers perform a 3-way handshake beginning with a selective (filtered) geocast, fol-

lowed by unicast responses to the source, followed by a multicast by the source vehicle to

the eligible receivers to announce a decision about a lane change. Replicating messages
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over the neighbour-to-neighbour links provides robustness to up to b2n/3c omission fail-

ures for n receivers in bounded time. The time bounds are independent from the size

of n, but an underlying assumption of the failure model is that broadcast failures are

uncorrelated, which is not generally true in wireless networks.

2.1.2 Intersection Collision Avoidance

Intersections are typically managed either through stop signs, or traffic lights. The use of

stop signs minimizes waiting time in low traffic conditions as cars can enter immediately

or as soon as cars that were already there have passed. In high traffic conditions,

greater throughput can be achieved using traffic lights, though most vehicles have to

wait some time before being able to enter the intersection [Board 10]. Cooperative

automated vehicles can potentially achieve both low waiting time and high throughput

as the junction can be used more efficiently when vehicles coordinate their trajectories

and know each other’s intentions.

The problem of crossing an intersection without colliding with vehicles coming from

different directions is most commonly referred to as Intersection Collision Avoidance

(ICA). Existing automated vehicles are capable of crossing intersections safely [Levin-

son 11], but cooperative solutions can potentially achieve much better efficiency by

planning trajectories in advance. [Lee 12] present the design of an intersection controller

to which vehicles communicate that increases traffic throughput by 33% compared to

a conventional control system, but perfect communication and 100% deployment are

assumed. However, their efficiency results are comparable to the seminal work on Au-

tonomous Intersection Management (AIM) by [Dresner 08], which does take into account

failures. Vehicle anticipate messages from the junction controller and can detect their

absence. The junction is divided into a 2-dimensional n by n grid, in which each grid cell
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represents a resource. Vehicle compete for exclusive, temporary access to the resources.

Vehicles must obtain a contiguous set of resources from the lane on which they arrive to

the destination lane in order to cross. The controller optimizes resource allocation for

maximum efficiency. A drawback of AIM is that every intersection needs to be equipped

with a controller (though it could be managed remotely over mobile networks), which

becomes a single point-of-failure. There is no strong safety verification of the algorithms,

and the number of safety incidents in simulations is greater than 0. Break-down of ve-

hicles is dealt with by sending warning messages to other vehicles and the intersection

manager, which is not robust to unbounded omission failure.

[Sin 11] present a fully distributed variant of AIM that relies on the capability offered

by the Vertigo communication model (by forward reference) for its safety, namely geocast

with reliable success detection. Vehicles that approach the junction send a message to

an area around the junction to allocate a set of resources. If success is confirmed, the

vehicle may proceed onto the junction. A formal analysis proves the algorithm is safe

and has no deadlock for a junction represented as a 1 by 1 grid [Asplund 12]. More

fine-grained grids allow better efficiency, since it allows more vehicles to be on the road

simultaneously, but complicates verification.

A real implementation of a distributed ICA system was demonstrated by [Milanes 11].

It involved multiple different autonomous vehicles driving around in an 8-loop. Vehicles

share state information through periodic beacons. A local controller applies basic right-

of-way rules based on the available state information, and only one vehicle is allowed

on the junction at a time. No specific measures are taken to deal with communication

failure and the safety of the algorithms is not verified. However, it is noteworthy since

it is one of the first real-world demonstrations of cooperative ICA.
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2.2 Vehicular Networks

The idea of vehicular communication is very old, with regular engineering publications

appearing as early as 1952 [IRE 52]. Clearly, these were targeted at analogue radio,

not digital communication networks, but it stresses the importance of the field. More

famously, the 1958 Disney cartoon ”Magic Highway U.S.A.” [Clemmons 58] showed a

vision of vehicles communicating in order to automate and modernize driving. Today

their vision is still far-fetched, but getting a little closer every day.

The field of vehicular networks has grown enormously in recent years and has been

subject of many recent surveys [Panichpapiboon 12,Karagiannis 11,Trivedi 11,Willke 09].

The surveys cover a variety of issues such as transmission power control, channel access,

routing techniques, multicasting, security and different communication technologies. The

field is already far too broad to describe it appropriately here. One particular survey

classifies our work quite well. Willke et al. show the relationship between several classes

of vehicular applications and some of the current work in vehicular networks [Willke 09].

The four application classes are:

1. General information service

2. Information services for vehicle safety

3. Individual motion control using inter-vehicle communication

4. Group motion control using inter-vehicle communication

Vertigo specifically targets the 4th class of applications, referred to here as cooper-

ative automated driving, which includes automated highway systems and intersection

collision avoidance. The survey discusses the communication requirements of each class
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with respect to a few topics. Type-4 applications require deterministic reliability, mean-

ing they need the ability to determine whether information was received. In terms of

scalability and scope each vehicle is expected to communicate with on the order of 10-

100 other vehicles in a relatively small region. Another important property of type-4

applications is the need for a persistent group structure. Vehicles need to explicitly

register their membership to share data, and understand roles and responsibilities. In

terms of latency there are some type-4 applications that only degrade when messages

are delivered after a deadline (soft real-time) and others that fail (hard real-time).

2.3 Geographic Communication in Vehicular Networks

For the purpose of cooperative automated driving, one of the most relevant vehicular

networking concepts is that of geocast. The term geocast was first coined by [Navas 97]

to describe broadcast of a message in an area defined by one or more circles or polygons

in the GPS coordinate system. Their approach mainly considered infrastructural net-

works in which the benefits of geographic addressing are limited, but not much later the

concept was applied to mobile ad-hoc networks (MANET) in which geographic address-

ing simplifies routing and maps well to mobile applications. Location Aided Routing

(LAR [Ko 98]) uses data from GPS to find network routes in a MANET. LAR is not

a true geocast protocol as it only provides unicast, but is very similar in its workings.

The protocol assumes the source node has some information about where the destination

node resided at time t0. Since t0 is in the past, the source needs to compute the expected

zone, which is the zone the destination node could be in currently. It then decides on

a request zone, which should contain the expected zone, and attaches it to the outgoing

message. If the source is outside of the request zone the message needs to be forwarded
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to one or more nodes in the zone. Intermediate nodes decide whether to forward the

message, depending on whether they are closer to the destination position (at t0). When

the request zone is reached, the message is forwarded (flooded) by all nodes whose GPS

shows they are present in the zone. The purpose of LAR is to establish unicast routes.

Nodes keep track of the source of the message and the destination sends back a route

reply via the first route over which a message arrives. In a follow-up paper the authors

showed that the technique can be applied equally well to broadcast or multicast (filtered

broadcast) to all nodes in an area [Ko 99]. In this case, the position of the destination

is replaced by the geographic centre of the request zone and no route establishment is

necessary. The concepts of a request zone and expected zone appear in a generalized

form in the Vertigo communication model.

A comprehensive survey of geocast techniques in vehicular networks is provided

in [Allal 12]. One of the challenges in vehicular networks is the highly variable node

density. When node density is low, the network may partition and there may not be

any routes to the destination. When node density is high, flooding can lead to a large

number of collisions on the channel if forwarding is not managed correctly. This last

phenomena is more widely known as the broadcast storm problem [Tonguz 06]. Since

geocast often involves flooding within the target area, the same problem occurs. An early

approach to adapt geocast to the node density in vehicular environment is Inter-Vehicle

Geocast (IVG [Bachir 03]). The protocol exploits the fact that messages only need to

be forwarded along the direction of the road. Vehicles defer forwarding of a message for

a short period and cancel the transmission if a vehicle further down the road broadcasts

it. To deal with situations where node density is low, IVG rebroadcasts the message

periodically at an interval that allows vehicles to react to the message before they come

into braking distance. In IVG, the source is assumed to be static and ever present. More
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recently, it was found that IVG still has a more localized form of the broadcast storm

problem, caused mainly by a lack of synchronization of wait times [Ibrahim 09]. The

authors proposed an extension named p-IVG, which only starts the rebroadcast timer

with probability 1/density and otherwise stops forwarding immediately.

In a high-paced environment in which low-latency networking is not always possible,

sending a message to an area becomes ambiguous. It is not clear to what point in time or

time frame the area refers. The situation can change significantly in between the moment

of sending, first reception, last reception and potentially first response and last response.

An approach to deal with this problem is a stored or time stable geocast [Maihofer 03].

In this form of geocast, the message is meant to be delivered to every car that is within

a delivery area before the expiration of the geocast, including those that are not yet

there when the geocast is started. Although functionally beneficial, the persistence is

difficult to implement. The authors suggest assigning or electing a server that stores

and repetitively geocasts the messages to the delivery area. An alternative is to have

all nodes store messages for their current location, and exchange them when a new

neighbour enters one of the delivery areas. These techniques fail when density becomes

too low, but more recent work has addressed these problems by anticipating failures.

Adapting the size of the area in which messages are forwarded to the expected density

can significantly improve the probability of the message being delivered once the vehicle

is actually in the delivery area [Hermann 07]. In a vehicular network this could be

achieved by utilizing vehicles travelling in the opposite direction [Yu 08].

Geocast and geographic routing in vehicular networks is standardized by GeoNet

[Tsukada 10], which ties the target area of a geocast to an IPv6 multicast address in

order to be compatible with existing and future IPv6 applications. GeoNet does not

specify the routing protocol. A large number of suitable routing protocols are explored
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by [Taysi 12], but no clear winner exists due to various different trade-offs that are made

in each protocol, which may suit some applications better than others. The specification

of the area is also still a subject of study [Jochle 12], and no standardized delivery area

formats exist as of yet.

2.3.1 Reliable Communication in Vehicular Networks

This thesis presents a group communication system for reliable, real-time communica-

tion. However, ”reliable” can be an ambiguous term, describing different, yet related

concepts. Further confusion is caused by its relationship to the term ”reliability”, which

is typically used as an abstract quantity.

One meaning of the term ”reliability” is the probability of successful communication.

In this case, ”reliable” would refer to a probability of 1, but this is not achievable in a ve-

hicular network. The density in a vehicular network is highly variable causing it to suffer

from contention in high density conditions, and partitioning in low density conditions and

obstructed environments. The DV-Cast protocol improves delivery probability by com-

bining broadcast suppression (as applied in IVG), with store-carry-forward to overcome

gaps [Tonguz 10]. While such reliability is very useful and can improve application-level

performance, it does not offer any guarantees for time-bounded applications.

Given the time constraints of vehicular networks, the probability of successful com-

munication depends heavily on the available time window. Bai et al. [Bai 07] suggest to

use the T-window reliability metric, defined as the probability of successfully receiving

at least one packet from a neighbour during a time window T . The authors target a

type of beaconing application where only a single beacon per car per time window is

needed, but the principle can be equally well applied at a per-packet basis for more

complex applications. The recommendation is that communication system developers
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should express their reliability as a function of the time window, such that application

developers can use this to optimize their time-constrained data transfer.

Given a lossy channel, an application can correctly determine whether communica-

tion succeeded through positive acknowledgements. The implementation is eventually

”reliable” through retransmissions and by addressing the specific challenges of vehicu-

lar networks, such as the highly variable node density. For example, in the AckPBSM

broadcasting protocol by [Ros 09], nodes store and keep forwarding a message until all

their neighbours have acknowledged it. This significantly reduces the likelihood of mes-

sages being lost due to individual collisions or omission failures, but still does not give

guarantees within a finite time window.

This thesis uses the term ”reliable” primarily to describe the determinism offered

through communication feedback in hindsight. The ability to distinguish success from

failure allows applications to reason about communication in a way that is reliable. This

refers to the reliability of information (on success), rather than communication, and

effectively sits above the network layer.

2.4 Group Communication Systems

Vehicular networks provide the basic communication infrastructure for disseminating

messages. However, cooperative automated vehicles may require the ability to reason

about the outcome of communication, such that they can reason about the behaviour of

other vehicles, which can be provided by an additional middleware layer. A view-oriented

group communication system (GCS) provides communication and membership services

in support of multi-point to multi-point (N to N) communication. The main purpose

of a GCS is to take away the complexity of providing reliable, distributed communica-
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tion primitives from the application. A GCS is usually tailored to a specific application

domain, such as distributed databases, clustered operating systems or highly-available

servers. Most work in GCSs happened in the 1990s and early 2000s. A comprehen-

sive survey of view-oriented group communication and a formal definition was given by

Chockler [Chockler 01]. Since then, group communication has attracted less attention.

This may be due to the increased attention to large-scale systems in which complete

membership is infeasible and more focus is on asymmetric (N to M) architectures.

2.4.1 Real-time and Mobile Group Communication

Real-time group communication is challenging due to the fact that strict time constraints

preclude reliability guarantees. [Kim 99] gives several definitions regarding success and

completion of real-time, fault-tolerant multicast. The multicast is successful if and only if

the sender receives an ACK from every receiver within the acknowledgement time bound.

The multicast is complete if the last acknowledgement arrived, a failure is detected or

the acknowledgement time bound expires. The same methodology is used in the Vertigo

communication model.

The usefulness of real-time group communication in mobile coordination applications

was recognized by Nett and Schemmer [Nett 03]. They propose to use the access point

in an 802.11 network as a centralized group communication system. This allows reason-

ably simple implementations of membership, atomic multicast and total ordering in a

timely fashion. Unfortunately, their approach relies on the presence of a synchronous

communication channel that is both timely and reliable, or has at most a known number

of omission failures within the time bound. Although this may be feasible in a static

environment where the channel is predictable and safety is not absolutely critical, it is

not applicable to the vehicular environment.
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In mobile ad-hoc networks, the challenge of providing membership in an ever chang-

ing environment has also been recognized. The Vertigo model exploits the maximum

speed of vehicles to reason about membership changes over time. Roman et al. took a

similar approach in their consistent membership service [Roman 01]. Similar to Nett and

Schemmer, their protocol assumes real-time communication to be reliable if the receiver

is within a fixed communication range. Vehicles are required to be in the same group

only if they are in a safe distance of each other. The safe distance is defined in such a

way that even if vehicles move away from each other at the maximum speed, they will

still be on the edge of the communication range. If the assumptions hold, the system

allows views to be maintained reliably for a known period. However, the reliability as-

sumption ignores obstacles, background traffic and atmospheric effects that can make

communication, especially when restricted by time, unreliable even at short distances.

2.4.2 Reliable Group Communication

One strategy to dealing with unreliability in vehicular network is to accept it and provide

insight into probability. Route Driven Gossip (RDG) [Luo 04] is a protocol that aims to

provide reliable multicast with predictable probability. The system maintains a view of

the membership group, but does not attempt to confirm reception or guarantee delivery.

Instead, it predicts the probability that a fraction of the messages will arrive at a member.

Applications can adapt to the probability values, by either taking measures that increase

the probability or adapting behaviour if the probability is insufficient. Unfortunately,

RDF is not quite suitable for vehicular networks or safety applications. One problem

is that metrics like packet loss that RDG uses to predict probability are themselves

much harder to predict in a vehicular network. A car may suddenly disappear behind

an obstruction that blocks communication. When safety is concerned, even very high
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probability values that are associated with life-critical systems would be insufficient

unless it is also highly certain that the value is accurate. In general, safety-critical

systems should not treat events as probabilistic, but should instead ensure any known

sequence of events that could lead to failure does not occur.

The space-elastic communication model [Bouroche 06a] is a predecessor of the Vertigo

model. It uses feedback to determine the space in which a message can be delivered in

real-time. The model relies on relatively low mobility and does not consider the decay of

the area or the set of potential receivers. SEAR [Hughes 06], the implementation of the

model, assumes reliable delivery of negative acknowledgements to provide adaptation

notification and the reliable delivery of messages to nodes that are in an area for a

sufficiently long time. Nonetheless, it takes a more realistic view than to simply assume

that communication always succeeds.

An important related work addressing deterministic reliability is the Reliable Neigh-

borcast Protocol (RNP [Maxemchuk 07]). It acts as an overlay on top of a 1-hop reliable

broadcast protocol, M-RBP [Willke 05], to make it suitable for highly mobile vehicles.

M-RBP uses a token ring protocol, in which receivers take turns in sending a control mes-

sage containing acknowledgements at fixed time intervals. Senders listen for the round

immediately following a transmission to confirm whether all nodes received it and which

are missing. If one of the members of the ring does not receive a control message at the

scheduled time it starts a distributed voting procedure. If a majority of ring members

did not receive the message the node is removed from the ring. Otherwise, the receivers

know which other receivers should have received the control message. Uncertainty can

arise if failures occur in the voting procedure and no majority can be determined, but

this is detectable. The problem with using M-RBP in a vehicular environment is that

vehicles constantly move out of the broadcast group. RNP provides an overlay which
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guarantees that a vehicle is in at least one and at most two overlapping groups. It defines

a set of rules that vehicles should follow to determine when they should join and leave

a group. The main difference in terms of guarantees offered by RNP vs. Vertigo is that

RNP simply removes vehicles from the group when communication fails. Additionally,

vehicles may not be aware of existing groups in an area. Under extreme circumstances,

this could lead to partitions that overlap spatially and cause vehicles to falsely conclude

that communication to neighbours succeeded.

2.5 Discussion

Each of the reliable communication solutions discussed offers some form of reliability,

but to some extent fail to offer a rigorous, safety-critical guarantee. Reliable routing pro-

tocols such as AckPBSM and DV-Cast fail to offer guarantees under time constraints.

A protocol such as RDG which can estimate probability may be useful, but it is difficult

to see it being used for safety-critical scenarios where probabilities less than or distin-

guishable from 1 are unacceptable. SEAR assumes that communication is reliable after

the initial scheduling phase, while Nett and Schemmer assume a bounded number of

omission failures within a time window, neither of which are realistic. RNP can detect

communication failures within a bounded time in a communication group, but multiple

communication groups can exist that overlap physically. Cohorts also define a reliable

communication scheme, which does seem feasible by creating neighbour-to-neighbour

communication channels using unidirectional antennas that do not suffer from collisions

or obstacles and only need to communicate over a short distance. If a neighbour-to-

neighbour channel fails, this can be immediately detected by the absence of a beacon

while ranging sensors show a vehicle is near. However, neighbour-to-neighbour chan-
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nels only provide communication within a cohort on a single lane. The Zebra protocol

suite provides reliable bounded-time cohort-to-cohort communication, but relies on a

failure model which assumes that omission failures in a wireless network are bounded

and uncorrelated.

While none of the communication protocols provide a solution that can truly be re-

lied upon by a safety-critical application, cooperative automated vehicles have a strong

need for it. Intersection collision avoidance scenarios may have obstacles blocking com-

munication and causing omission failures. Vehicles may not notice each other at all on

the communication channel. Cooperative automated vehicles on highways suffer from

variable density giving rise to both high contention and a high degree of partitioning on

the wireless network, causing similar omission failures. This could be particularly prob-

lematic in lateral coordination scenarios such as lane changes and on-ramp merging.

The remainder of this thesis presents the Vertigo communication model, which provides

a geocast operation with reliable success confirmation, which addresses the shortcom-

ings of existing communication solutions in fulfilling the requirements of cooperative

automated driving solutions.
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Chapter 3

System Model

This chapter introduces models for membership and group communication for cooper-

ative automated driving applications. Together these form the Vertigo Communication

Model comprised of a set of interfaces and data structures, their semantics, and the

guarantees offered by them. A reference implementation of the model is presented in the

next chapter. The model is designed to be both feasible to implement under reasonable

assumptions, and beneficial to applications. To clarify the rationale for the models, this

chapter first describes the design principles and requirements of cooperative automated

driving that led to the current definition. The requirements follow from the overall goal

of being able to confirm the safety of an intended manoeuvre in a distributed system of

vehicles. The problem that systems implementing the Vertigo model solve is to deliver

a message to all vehicles that may be in a given area at a given time and, if no omission

failures occur, provide a reliable confirmation of success.
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3.1 Design principles

The Vertigo model is partly based on a set of design principles that follow from existing

work [Bouroche 06b]. They are explicitly listed here in order to narrow the design space

of the model. Alternative approaches that do not follow these principles may be viable,

but are beyond the scope of this dissertation.

Table 3.1: Design principles

Geographic

group com-

munication

From the perspective of a vehicle in a cooperative automated driving sys-

tem, interactions typically involve a set of vehicles within a surrounding

area. Communication between the vehicles constitutes a form of many-

to-many or group communication, with partially overlapping groups.

Without prior knowledge of each of the vehicles in the area, the groups

can only be addressed geographically for the purpose of communicating

with them.

Real-time

control

Driving decisions have stringent real-time constraints. A communication

system that supports an application making driving decisions must allow

the application to act on the outcome of communication within bounded

time.

Adaptation Failures of the communication channel cannot be prevented. Therefore,

no communication system can guarantee that its messages will arrive

within a bounded time. The Vertigo model exploits the fact that it is

possible to confirm whether a message has arrived in hindsight through
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acknowledgements. However, a sender cannot distinguish between an

omission failure of a message or its acknowledgement. Applications need

to deal with this reality and have a way to safely adapt to the possible

failure scenarios that could have occurred in the absence of confirmation.

An example would be to stop the vehicle if the safety of going forward

cannot be confirmed.

Safety-

critical

The system only reports success with safety-critical certainty, or reports

that it cannot confirm success. In other words, there is no probabilistic

or best-effort notion of success.

Decentralized A decentralized solution is preferable, since a centralized solutions would

create a single point-of-failure for road traffic. Moreover, communication

failures between the central controller and the vehicle may occur. The

central controller cannot rely on its control decisions being acted upon,

nor can the vehicles it controls. Vehicles can only rely on locally available

information to take safe driving decisions, which means the problem is

inherently decentralized.

3.2 Cooperative Automated Driving Requirements

Cooperative automated driving requires planning algorithms with strict safety and time-

liness guarantees. Vehicles must at all times preserve a set of safety constraints and

anticipate worst-case scenarios to know that the actions that they take will not violate

any safety constraints in the future. This section will use a formal model of driving to

show that the need for the membership and group communication models presented in

the next sections follows from the safety requirements. The solution presented in this
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section is not necessarily the only way to do safe, cooperative automated driving, and

also not the only solution to which the membership and group communication models

or their characteristics can be applied. The solution is presented here to motivate the

design of the models, which ultimately follows from safety constraints.

3.2.1 Safety constraints

Safety constraints on vehicles can be defined as logical propositions. Given the global

set of vehicles V and the position of a vehicle i ∈ V at time t ∈ R+: P (i, t), and

a distance function, one can define the safety constraint as the assurance that the

distance between vehicles is always greater than 0 (no crashes): ∀t ∈ R+, i, j ∈ V :

distance(P (i, t), P (j, t)) > 0. This safety constraint must always hold for any auto-

mated driving system. Further constraints are necessary to create a safe system, par-

ticularly to allow the safety constraint to be preserved given finite deceleration. For the

sake of simplicity and genericity, only the implications of the safety constraint itself are

considered in this chapter.

We take an absolutist view on safety. Before taking any action, a vehicle must ensure

that it will not enter into a state in which the safety constraint might be violated in a

future worst-case scenario. There must at all times be a way for a vehicle to transition

to a state in which no safety-constraints are broken. A state is deemed safe if this is the

case, and unsafe otherwise.

3.2.2 Speed and locality

A constraint on the speed of a vehicle i at time t: V (i, t) can be defined, namely that

∀t ∈ R, i ∈ V : 0 ≤ V (i, t) ≤ vmax where vmax ∈ R+. In other words, vehicles cannot

go faster than vmax. For completeness, speed can be defined as a step function with
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∀t, δ ∈ R+, i ∈ V : (V (i, t) = V (i, t+ δ))⇒ (distance(P (i, t), P (i, t+ δ)) = V (i, t)), for

arbitrarily small time steps of length δ.

While trivial, the definition of a speed and maximum speed has important implica-

tions. In particular, it bounds the set vehicles with which the safety constraint can be

broken within a finite time frame. Given a future time tfuture and the current time tnow,

then the only vehicles j which could violate the safety constraint with a vehicle i are

those for which distance(P (i, tnow), P (j, tnow)) ≤ (tfuture − tnow)× vmax holds.

3.2.3 Actions

Because computation and communication are inherently discrete functions, software in

control of a vehicle must, by definition, make decisions for a future time frame in which

the vehicle will be in a certain area. Driving can be modelled as a vehicle i taking an

action with constraint Q(i, A, tstart, tend), which takes place in an area A and a time

frame between tstart ∈ R+ and tend ∈ R+ with tstart < tend. When it comes to actions,

we define that it must be the case that ∀t ∈ R+, i ∈ V : Q(i, A, tstart, tend) ⇔ ((tstart ≤

t ≤ tend) ⇒ P (i, t) ∈ A). In other words, the vehicle does not leave A during the time

frame. Furthermore, an action is only safe if all states that can be reached during the

time frame by performing the action are safe. Note that this definition does not put any

constraints on the vehicle’s behaviour or the software, it is merely a symbolic definition

to express and reason about continuous transitions.

3.2.4 Automated driving

The problem of automated driving can now be expressed as finding actions that allow

progress and are safe. Section 3.2.2 established that there is a bounded set of vehicles

that could violate the safety constraints by end time tend due to the maximum speed.
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Each of these vehicles is within an area A′ which includes all positions that lie less than

(tend − tnow) × vmax away from the action area A at current time tnow. The safety

constraint is known to hold for vehicles outside A′, and therefore the safety of an action

only needs to be confirmed in relationship to vehicles that are inside A′ at tnow. Phrased

differently, safety only needs to be confirmed for vehicles that could be in A by tend,

given their maximum speed vmax.

It is not necessarily the case that vehicles outside of A′ are not in any way involved

in confirming whether a potential action is safe. This relates primarily to the constraints

that are not specified. For example, a vehicle j inside A′ might need to stop for an action

Q to be safe, but whether j can stop may depend on vehicles outside A′. This makes the

problem of automated driving very difficult to solve if vehicles need to confirm the safety

of an action solitarily. However, cooperative driving can make the problem simpler.

3.2.5 Cooperative automated driving

If vehicles have the ability to communicate, the way in which the safety of an action is

determined can be simplified. Let us say that every vehicle j can determine whether its

own intentions comply with a candidate action Q(i, A, tstart, tend) desired by vehicle i.

In other words, i proceeding with Q does not lead to a violation of the safety constraint

with j. In that case, a viable solution to determining the safety of an action is if

vehicle i communicates Q to all vehicles that could be in A by time tend. Every receiver

determines whether Q complies with its own intentions, and responds to i to confirm or

reject the action. If i can confirm it received a positive response from all the vehicles that

could be in A by time tend, then the safety of the action is confirmed. However, due to

communication unreliability and the mobility of vehicles, responses may be omitted and

the set of vehicles that could be in area A at time tend may not be known. A candidate
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action that requires confirmation from other vehicles can only be taken if successful

communication can be confirmed. Otherwise, an alternative course of action should be

taken that is known to be safe.

Cooperative automated driving as presented here requires the ability to communicate

to the set of vehicles in a specified area at a specified time and a reliable confirmation of

successful delivery to every of the vehicles in the set. The Vertigo communication model

presented in the remainder of this chapter fulfills this requirement.

3.3 Membership model

This section describes the membership model used in the group communication system,

which is one of the core contributions of the thesis. The membership model defines

operations and constraints on membership tuples. The tuples are pieces of information

with a small calculus consisting of decay and merge operations. These operations allow

tuples to be combined across large areas and different points in time, while maintaining

a guarantee that is sufficient to fulfill the requirement of knowing all vehicles in an area.

3.3.1 Membership tuples

A membership tuple is a relationship describing the potential presence of vehicles in an

area at a given time. A tuple holds three data elements: a set of (network) identifiers of

vehicles M , an area A, and a time t, written M(M,A, t). The information conveyed in

the tuple is expressed as a constraint on the tuple known as the membership constraint:

If a vehicle i is in area A at time t, then its unique identifier i must be in M . A formal

definition is given below.
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∀i ∈ V, t ∈ R+ :M(M,A, t)⇔ (P (i, t) ∈ A at t⇒ i ∈M).

A membership tuple may only be exposed to an application or shared with other

vehicles if the constraint is known to be true. Membership tuples can be generated

using sensors, or obtained over the network from infrastructure or other vehicles. It is

expected that any component providing a membership tuple has ensured the membership

constraint holds. Given this guarantee, membership tuples can be used to reason about

the states of vehicles. Whatever holds true for all vehicles whose identifier is in M holds

true for all vehicles in area A at time t. Additionally, the absence of a vehicle from area

A at time t can be reliably confirmed if its identifier is not in M .

It is worth nothing that the membership constraint has a one-way implication and

therefore does not necessarily convey information about vehicles whose identifier is in M .

A tuple M(M,A, t) implies that vehicles not in M are not in A at time t, but vehicles

whose identifier is in M could be anywhere. It is generally expected that vehicles whose

identifier is in M are also in A, but M may be a superset of those vehicles.

3.3.2 Generating Tuples

There is no pre-defined way in which tuples must be generated. Tuples can be derived

from local knowledge of the environment. For example, if vehicle i knows from its

sensors that an area A around vehicle i is void of any other vehicles at time t, then

it can derive a tuple M({i}, A, t). Ranging sensors measure empty space with high

reliability. It is extremely unlikely that a fine-grained ranging sensor will not observe

any reflections from an object the size of a vehicle and thus falsely measure it as empty

space [Moras 10]. In addition to generating tuples from local knowledge, tuples can
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be derived from other tuples using the decay and merge operations. They can also

be serialized and communicated over the wireless network, such that tuples can be

cooperatively constructed.

3.3.3 Decaying tuples

Tuples are bound to a specific point in time t. However, when a tuple is obtained, it may

be bound to a different point in time than the point in time in which the application is

interested. Fortunately, a tuple that is bound to a time that lies in the future relative

to t can be derived from the tuple based on restrictions on the behaviour of vehicles.

In particular, vehicles cannot go faster than some maximum speed vmax, which may be

set high enough to ensure it is never reached by ordinary vehicles. Restrictions can be

defined as a property of elements of the road network.

If it is known that there are no other vehicles than those whose identifiers is in M

in area A at time t, then it also known that there exists some area smaller than A into

which no other vehicles than those in M could have entered before t + δ, even if they

were driving at speed vmax from the boundary of the area. This derivation is made

using the decay operation on membership tuples, which shifts time t forward by δ, but

shrinks the size of area A by a distance ≥ vmax×δ. The value of vmax may be dependent

on location and the specific shape of the area, which is implementation-dependent. An

implementation of the shift function to shrink the area is defined in the next chapter.

Given such a shift function, decay can be defined as follows:

function decay(M(M,A, t), tdecayed):

return M(M, shift(A, tdecayed − tnow), tdecayed).
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3.3.4 Merging tuples

The membership constraint permits a logical union of membership tuples to be per-

formed. For a pair of tuples M(M1, A1, t), M(M2, A2, t) with the same timestamp t, it

follows directly from the constraint that for any vehicle that is in A1 ∪A2, its identifier

is in M1 ∪M2. This means that a new tuple M(M1 ∪M2, A1 ∪ A2, t) can be derived.

Tuples with different timestamps can be merged by first applying decay using the shift

operation. The algorithm for merging arbitrary tuples is as follows.

function M(M1, A1, t1) +M(M2, A2, t2):

tmerged ←max(t1, t2).

Amerged ← shift(A1, tmerged − t1) ∪ shift(A2, tmerged − t2).

return M(M1 ∪M2, Amerged, tmerged).

When merging a set of membership tuples, the oldest tuple must be repetitively

decayed to the timestamp of the second oldest tuple, to lose as little information as

possible when performing decay. An algorithm for merging a set of tuples is given

below.

function merge(tuples):

tuples← sort(tuples in reverse chronological order)

for i = |tuples| − 2→ 0 do

M(Mi, Ai, ti)← tuples[i].

M(Mi+1, Ai+1, ti+1)← tuples[i+ 1].

A′i+1 ← shift(Ai+1, ti − ti+1).

tuples[i]←M(Mi ∪Mi+1, Ai ∪A′i+1, ti).

end for

return tuples[0]
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3.3.5 Discussion

A membership tuple provides a binding between the physical presence of vehicles and

their logical presence on the network. For a given membership tuple, it is guaranteed

that what holds true for all vehicles whose (network) identifier is in M must hold true

for all vehicles in A at time t. An application can use a membership tuple to confirm

that all vehicles in a given area at a given time have received its message.

A beneficial property of the membership tuple model is that (un)certainty is weaved

into the information a membership tuple conveys. As time progresses, the certainty

implicitly shrinks, but if more information becomes available, the certainty grows. This is

made explicit through the decay and merge operations. Membership tuples are naturally

tolerant to changes in the physical world by specifying only the potential presence of

vehicles in an area, rather than providing specific information on their location. These

properties of tuples make it feasible to implement the membership model in such a

way that useful, valid tuples can be constructed despite challenging conditions, as the

following chapters will demonstrate. At the same time, membership tuples provide a

reliable guarantee, which maps well to the requirements presented in Section 3.2. A

vehicle must ensure that the safety constraint holds for any action it takes. The set

of vehicles for which the safety constraint needs to be tested is bounded by the set of

vehicles that could be in the area A to which the action is constrained by end time tend.

The membership model can be used to establish a superset of these vehicles (M), and

to confirm safety for the set M is to confirm safety for all the vehicles.
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3.4 Group Communication Model

The group communication model defines a set of operations to be implemented by a group

communication system. The geocast operation sends a message to all vehicles that are

in a specified target area at a specified target time. Vehicles can receive and respond

to this message, and responses can be collected by the sender. The geocast operation is

followed by a result event, which specifies whether the geocast was successful, meaning

that all vehicles in the target area have received the message. The remainder of this

section will describe and substantiate the model, and formally specify it.

3.4.1 Geocast

The main operation of the group communication model is a geocast primitive. Geocast

aims to send a message to all vehicles in a particular geographic area. One of the benefits

of geocast in a wireless ad-hoc network is that it does not require upfront knowledge of

the presence of vehicles in an area. To perform a geocast, a vehicle broadcasts a message

containing a delivery area over the wireless ad-hoc network. Other vehicles that receive

the message check whether they are inside the delivery area based on their latest position

information and if so, deliver the message to applications, and potentially forward the

message to other vehicles in the area. With some probability, all vehicles in the area

will receive the message before a certain time, though omission failures may occur and

network partitions may exist within the area.

For the purposes of cooperative automated driving, the benefit of geocast lies in

the fact that it maps well to the spatial nature of the problem. Driving actions, as

modelled in Section 3.2.3, take place in a specific area, and all vehicles involved in

the action from a safety perspective are in the surrounding area. The set of vehicles

40



in the area is not known upfront, since it constantly changes. Therefore, geocast is a

suitable communication primitive for cooperative automated vehicles to communicate

about driving actions. Vehicles typically coordinate their behaviour with the vehicles in

the area surrounding them. Interactions that a vehicle i has with vehicles in remote area

A, will typically also involve the vehicles in i’s present surroundings, since they can reach

A at the same time as i. While some geocast models may target arbitrary geographic

areas, the Vertigo model is limited to areas in which the sender of the geocast resides.

It may sometimes be the case that a message is only meant for a particular subset

of vehicles in an area, such as those on a particular lane, but this level of filtering is

best left to higher layers where more information on the state of the receiving vehicle

is available. However, the model does define a basic filtering mechanism based on port

numbers, a common way of isolating applications in network protocols. When the group

communication system receives a message for a destination port to which no application

is bound, it responds with a message to avow that it is uninterested. If an application is

bound to the destination port, then the message is provided to the application and the

application is given the ability to respond with a message of its own. No size limitation

is specified, but it is imperative that responses are small, since there may be many of

them. A receiver can elect not to respond, which the sender will treat as an omission

failure. Responses are routed back to the sender. The sender can collect and read the

responses from both interested and uninterested receivers as they come in.

3.4.2 Timeliness

To perform a geocast using the Vertigo model, an application needs to specify a number

of points in time. The communication system needs to know to which point in time the

target area of a geocast refers in order to decide which vehicles are eligible, it needs to
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know when to deliver a messages to the receiver(s), and when results need to be delivered

to the sender. Each of these points in time are specified by the sender and included in

the geocast messages, such that all receivers are aware of them.

While relying on synchronized clocks is a poor design choice in an ’ordinary’ dis-

tributed system where clocks can be highly inconsistent, automated vehicles can be

expected to have GPS, which provides highly accurate time. This provides vehicles with

the ability to use the clock to organize sequences of events in a distributed system with

only minimal coordination between nodes. A similar approach has been used to build a

globally distributed, partition-tolerant database [Corbett 12]. Nodes can execute events

almost simultaneously using only their clocks, given an execution time. Every node keeps

a priority queue of events in the order of execution time and executes the first event in

the queue when the clock is greater than or equal to its execution time. Even in the

presence of clock jumps, nodes can guarantee a globally consistent ordering of events by

never executing an event that was meant for an earlier time than the last executed event.

The drawback of this approach is that some events may not be executed. However, this

is an expected problem when transferring messages over an unreliable network. There

is no guarantee of delivery.

The previously described mechanism can be used to give messages a globally consis-

tent delivery time and ordering. The sender of a geocast message can specify an optional

delivery time tdelivery, which is the time at which the message is to be delivered. If two

senders specify the same delivery time, their unique identifiers are used to determine the

order in which the events are executed. If a message with a delivery time in the past is

received, it is discarded. If the delivery time lies in the future, the message is added to

the delivery queue and delivered to the receiving application at the specified time. If no

delivery time is specified the message is delivered immediately upon reception and no
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ordering guarantee is provided.

At some point after initiating the geocast, the sender will inspect the results and

base a decision on them. The sender specifies the point in time at which the results

should be made available as tresult. It is necessary that tresult > tdelivery, such that there

is time to gather results after delivery.

Due to the mobility of vehicles, the set of vehicles in a target area changes over time.

For this purpose, the application needs to provide a target time ttarget. The geocast aims

to deliver the message to all vehicles that are in the area at the target time. This target

time needs to lie in the future and must be ≥ tresult, since the system would otherwise

have to keep track of which vehicles have visited an area in the past (before tresult).

However, if the target time lies in the future, it is not yet certain for some vehicles

whether they will be in the area at the target time. Likewise, it is not yet certain which

of the vehicles currently contained in the area will be there in the future. To ensure

that the geocast is able to reach all of the vehicles in the set, it needs to aim to deliver

it to all vehicles that might be in the area in the target time. An implementation can

achieve this by taking into account ’worst-case’ behaviour by expanding the target area

by vmax × (ttarget − tnow) to obtain the delivery area of the geocast. Effectively, the

expansion of a target area to a delivery area anticipates the effect of decay and uses the

inverse of the shift function used to implement decay.

3.4.3 Feedback with membership

The geocast operation is successful if it is known by the sender at tresult that all ve-

hicles that might be in the target area at ttarget received the message before tdeliver (if

applicable) and responded. The group communication system can provide this guaran-

tee to the application at tresult under a specific condition. The result event at tresult
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for a corresponding geocast event contains a membership view and a set of interested

responders Rinterested and a set of uninterested receivers Runinterested, and the combined

set is R = Rinterested ∪Runinterested.

Success is achieved if and only if, given a geocast with a target area of Atarget and

a target time of ttarget, a membership tupleM(M,A, ttarget) can be found for which the

following holds:

R ⊇M ∧A ⊇ Atarget

In other words, all members have responded and the membership area covers the

target area. This means that, even if some responders might not be members and some

members might not be in the target area at the target time, all vehicles that will be in

the target area at the target time have responded.

3.4.4 Sender API

When the sender initiates a geocast, it needs to specify the message data, the timeliness

constraints of the geocast, and the area in which the message is to be delivered. For-

warding and delivery will occur based on those parameters and trigger a series of collect

events to deliver any data that the receivers have sent back, followed by a result that

can be used to check whether the geocast was successful. The notation from Appendix A

is used to specify the API below.

Table 3.2: Sender API specifications

input geocast(

id ∈ IDrequest,
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m ∈ Message,

Atarget ∈ Area,

p ∈ Port,

T ∈ Timeliness) at tgeocast.

description The geocast event triggers forwarding of the data in m to vehicles in tar-

get area Atarget at time ttarget (part of T ), to be delivered at applications

that are listening on port p. T defines time constraints for the

geocast. To identify the geocast, the application must specify a locally

unique identifier, which will be used to associate events with the geocast.

As a result of the geocast event, 0 or more collect events and exactly 1

result event will be triggered. After a result event, no further events

will be generated for this geocast.

output collect(

id ∈ IDrequest,

source ∈ Address,

m ∈ Message).

description When receiving a geocast, receivers that are listening on the destination

port have the option to send back data. If they send data, the sender

needs a way to collect it.

The collect event is triggered by the geocast service as the responses

come in, until result is triggered at tresult. id refers to the identifier

used to initiate the geocast to which the message is a response.
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output result(

id ∈ IDrequest,

Rinterested ⊂ Address,

Runinterested ⊂ Address,

V ∈ MembershipView) at tresult.

description The result event is generated at tresult. Rinterested ∪ Runinterested con-

tains the addresses of confirmed receivers of the message and a set of

membership tuples V (defined below). There may be a slight delay be-

tween the results being made available, and the application being able

to process them. The application is responsible for anticipating and

handling this delay. id refers to the identifier used to initiate the geocast

of which this event is the result.

type Timeliness = (tresult ∈ Time, ttarget ∈ Time, tdelivery ∈ Time ∪ {⊥}).

description Timeliness is a tuple containing the relevant timeliness information of

the geocast as discussed in Section 3.4.2. The following constraint must

hold: tdelivery < tresult ≤ ttarget.

parameter Rinterested ⊂ Address.

description If an application on vehicle i is listening on the destination port p when

it receives a message generated by a geocast event at vehicle j, it has

the option to send a response. If it does, and the response arrives at V

successfully, its address will be in Rinterested in the result to indicate that

it was a participating receiver that successfully received and responded

to the message. If a receiver elects not to respond, it will not appear in

Rinterested despite having received the message.
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parameter Runinterested ⊂ Address

description When the service receives a geocast message, but no application is lis-

tening on the destination port p of the message, it automatically sends

an acknowledgement flagged as being from an uninterested vehicle. The

acknowledgement means that the message was successfully received, but

the vehicle was not interested. This allows the sender to distinguish

between vehicles that were potentially interested, but failed to receive

the message or respond, and vehicles that were not interested.

type Membership = (M ⊂ Address, A ∈ Area, t ∈ Time).

Instances written as: M(M,A, t).

description A membership tuple is a reliable piece of information which specifies

that no other vehicles than those whose identifiers are in M are in area

A at time t. The Area type is defined in Appendix C.

type MembershipView ⊂ Membership.

description A membership view is a set of membership tuples.

3.4.5 Receiver API

On the receiving end, the application must bind to and listen on a port, after which

it can receive messages sent to that port. Since it can be useful to include data in

the response to the geocast or change behaviour before responding, responses are not

sent automatically. A separate respond primitive allows the application to manually

respond. We use the notation defined in Appendix A to specify the API below.

Table 3.3: Receiver API specifications
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input bind(

bid ∈ IDbind,

p ∈ Port).

description The application must bind to a port to receive messages sent to that

port. It specifies a locally unique identifier and a locally unique port

number. This is the same port used in the geocast by the sender and

must be known in advance. There should also be an option to unbind,

but this is not defined explicitly.

output receive(

bid ∈ IDbind,

rid ∈ IDresponse,

m ∈ Message) at tdelivery - if specified.

description If an application is bound to port p before the service receives a message

destined for p, the message is delivered to the application through a

receive event. The bid parameter refers to the identifier specified in the

bind event.

The service generates rid, which the application can use for respond

events. The implementation may also make the source address, target

area, and timeliness specification available to the receiver, but these are

not strictly necessary.
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input respond(

rid ∈ IDresponse,

m ∈ Message).

description A receiving application can generate a respond event some time after

a receive. To associate the response with a geocast, the application

needs to specify the rid parameter that was given by the receive event.

The response serves to let the sender know that the message has been

successfully received and processed by the receiving application and may

include additional data. It is up to the application to ensure that it gives

a response in time for it to be returned to the sender. If it does not use

respond the sender will not know whether its geocast arrived.

3.4.6 Discussion

The group communication interface effectively fulfills the requirement for confirming the

safety of actions in cooperative automated driving as defined in Section 3.2.5. It offers

the ability to send a message to all the vehicles in an area at a particular time, offers

vehicles the ability to respond, and can reliably confirm whether all eligible vehicles

have done so. The remainder of this thesis will show how the model can be implemented

using ordinary sensing and communication equipment, and how it can be applied to

cooperative automated driving problems.
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Chapter 4

Design and Implementation

This chapter presents a design and implementation of the Vertigo model to demonstrate

the feasibility of implementing the guarantees of the model using a basic set of capabili-

ties. The overall architecture of the implementation is shown in Figure 4.1, in which an

arrow indicates a uses relationship. The implementation consists of three components:

a beaconing service, a membership service, and a group communication service. Each

component uses a set of capabilities offered by lower layers. The capabilities assumed

to be present on the vehicle are ad-hoc networking, a set of LIDAR sensors, a position

sensor, an orientation sensor, an accurate clock (not shown), and a road map. The im-

plementation offers the sender and receivers APIs defined in Sections 3.4.4 and 3.4.5 to

applications. The remainder of the chapter will describe the capabilities, with particular

attention to the way the road map is defined, and the algorithms used by each of the

components.

The actual code for the implementation is written in Java and is based on a generic

capabilities interface that follows these definitions. The Java Topology Suite [Vivid

Solutions Inc. 13] is used to implement several geometric algorithms. The implemen-
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Fig. 4.1: Architecture of the Vertigo implementation
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tation has been tested and evaluated on a cooperative automated driving simulator,

which offers a simulated implementation of the capabilities and is described in Chap-

ter 6. The code for the implementation and the simulator can be found on http:

//thesis.marcoslot.net/.

4.1 Capabilities

The capabilities of a vehicle can be seen as the environment in which the implementation

operates. The implementation is effectively a translation of the services offered by lower

layers to the service offered by the Vertigo communication model. Any vehicle which

offers these capabilities can use the Vertigo implementation from this chapter. The

assumed capabilities are a subset of the current capabilities of research vehicles [Levin-

son 11,Lidstrom 12]. To save space in this chapter, Appendixes B and C formally define

the APIs of the capabilities shown in Figure 4.1.

An important aspect of the definition of these capabilities is that worst-case bounds

on the accuracy of sensors are assumed. This assumption must hold to ensure the

reliability of the implementation. However, as Chapter 6 shows, a relatively high in-

accuracy can be tolerated without heavily impacting the ability of Vertigo to confirm

success. Clock inaccuracy is not currently considered, but could be considered using the

TrueTime API [Corbett 12] instead of absolute time stamps.

4.2 Road Map Area Definition

The way areas are represented is an essential aspect of the implementation. In a Carte-

sian coordinate system, areas can be represented as polygons or other two-dimensional

shapes. However, in the context of vehicles driving on roads, such a representation would
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(a) Connectors and road segment paths (b) Road segment surfaces and paths

Fig. 4.2: Road map representation used by the Vertigo implementation consisting of

road segments and connectors

be impractical and inefficient. Only parts of an area that lie on a road are relevant, and

the shape of the road itself almost never changes. Moreover, vehicles are heavily con-

strained in the way they move over roads, staying close to following a specific path in a

specific direction. These constraints can be exploited in order to define an area that is

relative to a road map in a practical, and efficient manner. A specific point or section of

a road map can be defined in one dimension as an offset along the path of a road. Move-

ment on a road can be reasoned about as a change in offset on the path. Where roads

interconnect, their paths do as well, and movement can be represented as transitioning

from one path to another.

Appendix C specifies the road map and different area representations. The road

map is defined as a graph of road segments (edges) and connectors (nodes). Vehicles can

drive from one road segment to another if there exists a connector between them (see

Figure 4.2(a)). Road segments have a path, which is a two-dimensinoal line string rep-

resenting the shape of the road, and a surface area, which is a two-dimensinoal polygon
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(a) Range-based area (b) Boundary-based area

Fig. 4.3: Area representations used in the Vertigo implementations

(see Figure 4.2(b)). The paths and surfaces of connected road segments also connect,

such that they form a contiguous geometric structure. Road segments can overlap to

represent bridges and tunnels, as long as they are not connected by a connector. Road

segments also define a maximum speed that vehicles on the road segment must adhere

to.

There are multiple requirements on the specification of areas for the implementa-

tion of the Vertigo model. A mapping from sensor data to an area needs to be pos-

sible. Areas need to have a compact representation, such that they can be serialized

and communicated as part of messages. Areas also need to support spatial operations

such as merging, and containment. To meet all these requirements, the implementation

uses several different representations of areas, and defines translations between them.

Some representations are only used as intermediate states and will be described as part

of the algorithms. The primary representations used to represent areas in interfaces

and messages are a one-dimensional range-based representation, and a one-dimensional

boundary-based representation.
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The range-based representation of an area consists of a set of (road segment identifier,

start offset, end offset) tuples defining ranges of offsets which are included in the area

on the network of paths. Offset is a distance over the path of the road segment from the

start. Figure 4.3(a) shows an example of set {(1, 3.0, 10.0), (2, 3.0, 10.0), (3, 0.0, 7.0)}.

The range-based representation allows for efficient geometric operations such as checking

containment, and merging. The boundary-based representation consists of a set of (road

segment identifier, offset, forward/backward) tuples defining the boundaries of a one-

dimensional area on the network of paths. Forward/backward indicates which direction

from the offset over the path is included in the area. Figure 4.3(b) gives an example of

area {(1, 3.0, front), (2, 3.0, front), (3, 7.0, back)}. The boundary-based representation

of an area can be compactly represented in messages, since large, complex areas can be

captured by a small number of boundaries. Conversions between the representations are

defined in the Appendix C and used in several places in the implementation.

4.3 Beaconing service

To participate in Vertigo, vehicles periodically broadcast their identifier, position mea-

surement, and the time at which the position measurement was taken. Incoming beacons

obtained using the receive interface are kept in a neighbourhood view, which can pro-

vide the last-known position of a vehicle, given its identifier. Before a beacon is sent

using broadcast, additional data can be added to it by individual components, such as

the membership service. The beaconing rate is configurable per application.
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4.4 Membership Service

The membership service maintains a membership view, which is a set of membership

tuples. The service generates local membership tuples from its sensor data, which it

communicates to other vehicles by attaching them to beacons. Tuples from received

beacons are stored in the membership view. When requested, the membership view is

collapsed into a single tuple to allow it to be used for reliable success confirmation of a

geocast query.

4.4.1 Sensing a Local Membership Area

When a local membership tuple is requested in order to transmit a beacon, or provide

feedback on communication, a series of steps is performed to generate the membership

tuple. The method used by the implementation is to convert LIDAR measurements into

an area that is empty except for the vehicle itself, which gives a valid membership tuple

for the current time. A series of steps is performed to convert the LIDAR measurements

into an area of the one-dimensional range-based form, which can be compared to the

target area of a geocast.

The algorithm performs the following steps:

1. Convert LIDAR beams to a polygon in a global coordinate frame

2. Subtract position and LIDAR uncertainty through polygon offsetting

3. Convert polygon to 2D road map areas

4. Convert 2D road map areas to a 1D range-based representation

The remainder of this section discusses each step in detail.
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Fig. 4.4: LIDAR Sensors on the vehicle

4.4.1.1 Convert LIDAR Beams to a Polygon

A vehicle is assumed to have a set of LIDAR sensors positioned on its outer-rim. The

properties of the sensors, such as its relative position and orientation on the vehicle, the

angular spacing of beams, and the range, are known by the implementation. The specific

configuration used in current simulations is displayed in Figure 4.4. The configuration

has 180◦ LIDARs on the back and front of the vehicle, which are modelled after the

SICK laser range finders used in the DARPA grand challenge in 2005 [Buehler 07]. The

beams have an angular resolution of 1◦ and maximum range of 30m. Additionally, there

are two single-beam LIDARs on each side of the vehicle to observe the area right next

to the vehicle.

The set of beam measurements are obtained through the ranges interface. To con-

vert the beam measurements into a two-dimensional area, they are traversed in circular

fashion to form a ring of points. For every pair of adjacent beams, the projection of the

tip of the shorter beam on the longer beam and the tip of the shorter beam are added

to the ring. An example of the formation of such a ring is shown in Figure 4.5. The
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Fig. 4.5: Converting LIDAR beams to a ring of points

process is repeated until a ring is obtained that forms the outline of the polygon. An

example of a complete polygon (yellow) extracted from LIDAR data (green) is shown in

Figure 4.61. The process is based on the assumption that the area between the beams

is empty. To some extent this is a topological problem. Very small or pointy vehicles

could fit in between a very narrow pair of beams, and different rotations of vehicles

could be considered. The projection approach gives an approximation of the area that

is guaranteed to be empty given the length of the beams and rectangular vehicles, which

can be made reliable by correcting the polygon for inaccuracy.

When all pairs of consecutive beams are processed the points form a polygon relative

to the vehicle. The polygon is transformed to a global coordinate frame using the

measured position, and rotated to the current orientation of the vehicle.

1Map data ©2013 Google

58



Fig. 4.6: Conversion of LIDAR data (green) to polygon (yellow)

4.4.1.2 Accounting for Uncertainty

In the transformation of the polygon to the global coordinate frame, the position uncer-

tainty needs to be taken into account. After transformation, the polygon may include

points that were not empty, because the actual position of the vehicle is further from

those points than the measured position. To correct for this difference, the worst-case

uncertainty of the positioning sensor is subtracted from the polygon through a process

called inwards polygon offsetting [Kim 98]. Offsetting moves any point on the boundary

of the polygon inwards by a distance δ. Defined in another way, the obtained polygon is

the intersection of all polygons that could be obtained by a transformation of a distance

of at most δ. This means that the the polygon resulting from an inwards offset by δ

meters is the area that is known to be empty even if the position of the original polygon

lies up to δ meters away from the measured position.
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In clear weather and within the maximum range, LIDAR measurements are very

accurate, within a few millimetres of the actual value. LIDARs are less accurate in poor

visibility, but in that case the measured values become lower than the actual distance to

solid objects, which is not a problem from a safety perspective. A source of uncertainty

that does pose a risk of overestimates is the time it takes to measure multiple LIDAR

beams. The 180◦ laser range finders that were used in the DARPA grand challenge have

a frequency of 75Hz, meaning vehicles could have moved vmax/75 since the oldest beam

measurement (e.g. 53cm for vmax = 40m/s - highway speed). An additional 1m is taken

away from the polygon to account for LIDAR uncertainty and other, smaller sources of

uncertainty such as rounding errors and topological uncertainty.

The offsetting is performed using a common geometry library. A conservative off-

setting mode is used that preserves inwards pointing angles and avoids creating round

curves with many points. Offsetting is the most computationally expensive step, but

key to dealing with (bounded) inaccuracy.

4.4.1.3 Intersect with Road Map

The polygon obtained in the previous step gives an area in a two-dimensional Cartesian

coordinate system. To be able to reason about this area from the perspective of a

vehicle, it needs to be converted to an area that is relative to the road map. As previously

mentioned, every road segment has a two-dimensional surface polygon associated with it.

The outer-ring of the polygon is intersected with the surface of the current road segment

and any connected road segments. Unconnected road segments are not considered since

they may overlap in 3 dimensions, in which case the vehicle would falsely conclude that a

road above or below it is empty based on its two-dimensional overlap with the polygon.

The result of the intersection of the road segment surfaces with the empty area, is a set
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(a) Polygon overlaid on road map (b) Intersection with road segment surfaces

Fig. 4.7: Intersection of a measured polygon with the road map

of polygons whose boundaries partially overlap with the boundaries of the road segment

surfaces as shown in the example in Figure 4.7.

The polygons are converted into one-dimensional ranges by finding ranges for which

the full width of the road segment surface is covered by the polygon. To do so, the

polygon is separated into a set of line strings containing the points on the polygon

that lie within the surface of the road segment. Any point on a line string that is

not also a point in the road segment surface implies that the full width of the road

is not covered. For each point in the line string, the projection onto the path of the

road segment is computed and the corresponding offset from the start of the path. The

minimum and maximum offset of the projections form a range r which is to be excluded

from the final area. An example is shown in Figure 4.8(a), in which excluded ranges

are marked by red lines. If two ranges r1 and r2 overlap they are merged by taking

(min(r1.start, r2.start),max(r1.end, r2.end), r1.segment). The ranges are then sorted
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(a) Ranges for which full width is not covered (b) Final range-based area after inversion

Fig. 4.8: Conversion of 2D road map area to 1D

by offset, giving a lowest range rmin and the highest range rmax. The start and end of

the path are corner cases. If the start of the path is not inside a polygon, then rmin is

expanded to (0, rmin.end, rmin.segment). Likewise, if the end of the path is not inside

a polygon, then rmax is expanded to (rmax.start, lpath, rmax.segment) where lpath is the

length of the path. Finally, the ranges are inverted; gaps become ranges and ranges

become gaps to obtain a set of ranges for which the full width of the road segment is

included in the measured polygon as per the example in Figure 4.8(b).

A concrete example of the conversion of a polygon to one-dimensional ranges is given

in Figure 4.9, which shows a visualization of a running version of this algorithm. Vehicles

are shown as red rectangles, the polygon derived from LIDAR measurements is shown

in yellow, and the parts of paths that are covered by ranges in the resulting range-based

area are marked in green.

The ranges for all road segments are combined to form an area A, which is added as

part of a new tuple M({i}, A, t), where i is the unique identifier of the vehicle, and t is

the time at which the LIDAR measurements were taken.
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Fig. 4.9: Conversion of polygon to one-dimensional ranges

The parts of the area where the full width of the road is not covered are lost in the

conversion from 2D to 1D. This is acceptable from the perspective of membership, since

it does not add any potentially unknown vehicles to the area. However, if two vehicles are

driving next to each other on the same road segment they could never measure an empty

polygon that covers the full width of the road. The current approach assumes a fine-

grained road map in which road segments describe individual lanes and no two vehicles

could ever drive next to each other on the same road segment. If a road segment can

contain multiple lanes, a preferable solution is to send the LIDAR data in compressed

form as part of beacons, compute the polygons from the received data, compute the

union of the polygons (considering the effects of delay between measurements through

offsetting), and then perform the conversion described in this section. A demonstration of

this approach is given in [Slot 11b]. The drawback is that sending LIDAR data generates
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far more network traffic, and merging polygons adds a computationally expensive step

to the process, so expensive that real-time simulations are no longer feasible. However,

the solution may be preferable in a setting with coarse-grained, or inaccurate maps. This

chapter describes the implementation as it used in the evaluation in Chapter 6, which

uses the more efficient approach to allow real-time simulations.

4.4.2 Beaconing Membership Tuples

A vehicle i which establishes that area A is empty at time t can generate the tuple

M({i}, A, t). This tuple can be attached to beacons in order to share it with neigh-

bours. To represent the area compactly, the boundary-based representation is used.

The boundaries are represented as (road segment id, offset, forward/backward) tuples,

which are serialized using 4 bytes for the road segment identifier, 4 for the offset, and

1 for the direction, to a total of 9 bytes per boundary. The total network overhead of

sending a membership tuple depends mainly on the number of boundaries, and is studied

further in Chapter 6.

Vehicles synchronize the time at which they generate the membership tuple to send

in the beacon using their clocks. The benefit of this is that the time difference between

tuples can be kept at a minimum, which avoids big gaps resulting from decay.

Neighbours of vehicle i that receive the beacon containing the membership tuple

store it in their local membership view. Periodically, the membership view is cleaned by

removing all beacons whose area is empty when decayed to the current time, since they

no longer convey any information.
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4.4.3 Merging 1D Road Map Areas

The tuples that are received from other vehicles can be merged into a single tuple

M(M,A, t) when needed to confirm success for a geocast, as defined in Section 3.4.4.

For this purpose, the range-based form of A is used. The merging operation is a logical

union between an area Amerged = A1 ∪A2 such that any point in Amerged is in either A1

or A2 and vice versa.

Merges are performed using the range-based area representation, which defines an

area as a set of ranges. A new range r can be added to an area by joining it with any

existing ranges it intersects with before adding it to the set. To merge two areas, all the

ranges in one area are added to the other according to the algorithm below.

func merge(A1 ∈ RangeArea1D, A2 ∈ RangeArea1D).

Amerged ← A1.

for all r ∈ A2 do

omin ← r.start.

omax ← r.end.

for all l ∈ Amerged where l.segment = r.segment do

if intersects(r, l) then

omin ←min(omin, l.start).

omax ←max(omax, l.end).

Amerged ← Amerged \ {l}.

end if

end for

Amerged ← Amerged ∪ {(omin, omax, r.segment)}.

end for

65



return Amerged.

end merge.

func intersects(r ∈ RoadSegmentRange1D, l ∈ RoadSegmentRange1D).

return (r.segment = l.segment) ∧ (r.end ≥ l.start) ∧ (r.start ≤ l.end).

end intersects.

All ranges from A2 are added to all ranges from A1 to form Amerged. The algorithm

from Section 3.3.4 to merge multiple membership tuples can then be used.

4.4.4 Decaying 1D Road Map Areas

To merge membership tuples or shift them forward to the target time ttarget of the

geocast before being passed to the application in the result event, a decay function

needs to be defined. To decay a membership tuple M(M,A, t), δ is added to t and A is

reduced in size to account for vehicles that may have been driving at maximum speed

from the boundaries of A between time t and time t + δ, reducing the size of the area

which is known to be empty except for vehicles whose identifier is in M .

The algorithm for shrinking an area first obtains the boundaries of the area using

the rangesToBoundaries function from Appendix C and then moves boundaries by

a distance of at most vmax × δ in the direction of the road segment (which may be bi-

directional) as shown in the example in Figure 4.10. The distance moved is removed from

the area. If a connector is encountered, the remaining δ is calculated and a new walk is

started from the end of each connecting road segment by inserting a new boundary. The

algorithm can also expand the area if δ is negative, in which case the distance walked

in the opposite direction of the road segment is added to the area. The full algorithm is

given below.
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(a) Boundaries moved inwards in decay (b) Range-based area after decay

Fig. 4.10: An example of decay of a one-dimensional road map area

func shift(

area ∈ RangeArea1D,

δ ∈ R+).

boundaries← rangesToBoundaries(area).

for all boundary ∈ boundaries do

shiftFromBoundary(area, boundary, δ).

end for

end shift.

func shiftFromBoundary(

area ∈ RangeArea1D,

boundary ∈ Boundary1D,

δ ∈ R+).

segment← segments[boundary.segment id]

distance← |δ| × segment.vmax.
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if δ > 0 then

forwardDecay ← boundary.inclusive = front.

else

forwardDecay ← boundary.inclusive = back.

end if

if ((segment.direction = backward∨segment.direction = both)∧¬forwardDecay)∨

((segment.direction = forward∨segment.direction = both)∧forwardDecay) then

remainingDistance← distance.

if forwardDecay then

{Offset of boundary increases}

start← boundary.offset.

if start+ distance ≤ length(segment.path) then

{Shifting ends on this segment}

end← start+ distance.

remainingDistance← 0.

else

{Shifting continues onto other segments}

end← length(segment.path).

remainingDistance← distance− (end− start).

end if

else

{Offset of boundary decreases}

end← boundary.offset.

if end− distance ≥ 0 then

{Shifting ends on this segment}
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start← end− distance.

remainingDistance← 0.

else

{Shifting continues onto other segments}

start← 0.

remainingDistance← distance− (end− start)

end if

end if

if δ > 0 then

area← area \ {(segment id, start, end)}. {Shrink the area}

δ ← δ − (end− start)/segment.vmax. {Compute remaining δ}

else

area← area ∪ {(segment id, start, end)}. {Expand the area}

δ ← δ + (end− start)/segment.vmax. {Compute remaining (negative) δ}

end if

if remainingDistance > 0 then

if forwardGrowth then

shiftFromConnector(area, segment.to, δ).

else

shiftFromConnector(area, segment.from, δ).

end if

end if

end if

end shiftFromBoundary.
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func shiftFromConnector(

area ∈ RangeArea1D,

connector id ∈ IDconnectors,

δ ∈ R+).

connector ← connectors[connector id].

for all segment id ∈ connector.segments do

segment← segments[segment id].

if connector id = segment.from then

if δ > 0 then

{Shrink area further from start of segment}

shiftFromBoundary(area, (segment id, 0, front), δ).

else

{Grow area further from start of segment}

shiftFromBoundary(area, (segment id, 0, back), δ).

end if

else

if δ > 0 then

{Shrink area further from end of segment}

shiftFromBoundary(area, (segment id, length(segment.path), back), δ).

else

{Grow area further from end of segment}

shiftFromBoundary(area, (segment id, length(segment.path), front), δ).

end if

end if

end for
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end shiftFromConnector.

The outcome of the shift algorithm is used to construct a decayed tuple as described

in Section 3.3.3.

4.4.5 Collapsing Membership Tuples

When the result event occurs (see Section 3.4.4 for the definition), the set of receivers

for a geocast needs to be compared to the membership view. At that point, the tuples

are merged according to the algorithm in Section 3.3.4, which orders the tuples chrono-

logically and repetitively decays the oldest to the second oldest tuple to merge them,

using the decay and merge algorithms for road map areas. Finally, the resulting tuple

is decayed to the target time ttarget.

The membership tuple is requested by the group communication service to confirm

a set of receivers R is a superset of all the vehicles in a given target area Atarget at a

given target time ttarget. Only tuples for which the set of members M is a subset of the

set of receivers R are considered when merging tuples. If membership tuples for which

M is not a subset of R are considered in the merge, then R ⊇ M would not hold for

the merged tuple either, which means that the success of a query cannot be confirmed.

The approach of filtering by R is optimal in the sense that it always confirms success if

possible. By applying the filter, success becomes detectable solely by checking whether,

given a tupleM(M,A, ttarget), the membership area A contains a target area Atarget. If

this is the case, any vehicles in Atarget at ttarget must be in R. If a vehicle j is in the

area but not in R, then either there is no membership tuple containing j and the vehicle

would create a gap in the LIDAR observations of other vehicles and the resulting A,

or there is such a tuple, but it is not considered because j ∈ M and j 6∈ R, therefore

R 6⊇M .
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4.5 Group Communication Service

The group communication service is the component that implements the Vertigo API

(see Sections 3.4.4 and 3.4.5). It offers the geocast, collect, and result interfaces for

senders, and the receive and respond interfaces for receivers.

4.5.1 Starting a geocast query

A geocast event at time tgeocast triggers a query to vehicles in a delivery area, which is

derived from the target area defined by the applications using the target time. The target

area Atarget in the geocast interface uses the one-dimensional range-based format. The

aim of the geocast is to reach all vehicles that will be in the target area Atarget at time

ttarget. To ensure that all those vehicles can be reached, the boundaries of the target

area are expanded by vmax × (ttarget − tgeocast). The expansion algorithm is effectively

the inverse of the decay and implemented by the shift function from section 4.4.4, which

is used with δ = tgeocast − ttarget (which is negative).

The delivery area resulting from the algorithm is serialized using its boundary-based

form, which is obtained using the rangesToBoundaries function from Appendix C. A

query is constructed that includes the message from the application, the delivery area,

a destination port, the unique identifier of the vehicle, a sequence number identifying

the query, the result deadline, and the (optional) delivery time. The query is send to

surrounding vehicles using the broadcast interface.

4.5.2 Receiving and responding to a geocast query

When a vehicle receives a query, it converts the delivery area back into its original

range-based form using the breadth-first-search algorithm described in Appendix C. If
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the vehicle does not view itself as being inside the delivery area based on its latest sensor

reading, it discards the message. It also discards the message if the result deadline or

delivery time have passed. If the message has a delivery time, it is added to a priority

queue to guarantee the delivery order is consistent across receivers. Queries from the

queue are passed to the application when the clock is equal to or greater than the

delivery time. Queries whose delivery time lies before that of the last executed event are

discarded. The order of messages is effectively guaranteed by exploiting the fact that

omission failures are expected. This guarantee can be useful to applications, but is a

much weaker guarantee than a totally ordered multicast. If no delivery time is specified,

the message is passed on directly to the application listening on the destination port

through the receive interface.

The application obtains the message using the receive interface and performs some

arbitrary processing. It then uses the respond interface to pass a small or empty

response back to Vertigo at time tresponse. If tresponse > tresult the response is discarded,

since it cannot be delivered in time for the result deadline. Otherwise, the response is

sent back over unicast to the sender of the query. Many vehicles will receive the query

and send a response at approximately the same time, potentially causing contention on

the wireless network. To avoid contention as much as possible, the message is sent back

with a random delay of at most tresult−tresponse. The response message also contains the

identity of the responder, the sequence number of the query, and a flag indicating that

the application processed the message (was ’interested’). If no application is listening

on the destination port, an empty response is sent back with a flag indicating that no

application processed it (’not interested’).

A query causes multiple vehicles to all send responses to a single source, which

is known as an ACK implosion and creates a sudden burst of network traffic. This
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problem is primarily dealt with by keeping responses very small (16 bytes header and

application-level response) and introducing a random delay before responding. However,

there is no reliable alternative to explicit acknowledgement to guarantee to the source

that the message arrived. Negative ACKs are sometimes used to prevent ACK implosion

in multicast [Sobeih 04], but the negative ACK might be lost, causing the sender to

falsely conclude the transmissions was successful. Moreover, negative acknowledgements

can only be applied if receivers already know that a transmission is about to happen,

otherwise they would not know when to send the negative ACK.

4.5.3 Feedback on a geocast query

If the source of the query receives a response message, and the receiver was interested, it

is passed to the application through the collect interface and the unique identifier of the

receiver is added to Rinterested, which is kept per query. If the receiver was not interested,

its identifier is added to Runinterested. At the result deadline, Rinterested and Runinterested

are passed to the initiating application with the latest membership tuple (collapsed to

R = Rinterested ∪Runinterested) through the result interface, which completes the query.

To confirm successful delivery of the query, it needs to hold true that given a mem-

bership tupleM(M,A, t) and a target area of the geocast Atarget: A ⊇ Atarget. In other

words, the target area is contained by the membership area. Both areas are represented

as in a set of ranges. A contains algorithm for range-based areas is given below.

func contains(A ∈ RangeArea1D, Atarget ∈ RangeArea1D).

for all rtarget ∈ Atarget do

contained← false.

for all r ∈ A where r.segment = rtarget.segment do

if (r.segment = rtarget.segment)∧ (r.start ≤ rtarget.start)∧ (r.end ≤ rtarget.end)
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Fig. 4.11: A successful query, the membership area (green) covers the target area (blue)

then

contained← true.

end if

end for

if ¬contained then

return false.

end if

end for

return true.

end contains.

If indeed Rinterested ∪ Runinterested ⊇ M ∧ contains(A,Atarget), then success of the

query is reliably confirmed. Figure 4.11 shows an example of a successful query by the
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Fig. 4.12: Unsuccessful query due to omission failure, the membership area (red) does

not cover the target area (blue)

white vehicle. The membership area A is displayed in green and covers the target area

Atarget displayed in blue. In the example in Figure 4.12, the membership area A (now

red) does not fully cover the target area, due to an omission failure.

4.5.4 Forwarding

If the broadcast and unicast operations offered by the network interface pass messages

over a single hop, then they have an expected range of 100-300m [Demmel 12]. However,

the delivery area may exceed this range. In that case, one way of reaching other vehicles

in the delivery area is to forward the message over multiple hops. This is a challenging

problem in a vehicular networks, in which both high contention and high partitioning

are common. Several forwarding protocols have been developed that can adapt to both

conditions, most notably DV-CAST [Tonguz 10], which can switch between ’instant’
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forwarding and store-carry-forward, and AckPBSM [Ros 09], which combines forwarding

based on the observed network topology with periodic acknowledgements to recover from

partitions. For the purposes of Vertigo, DV-CAST is insufficient, since it only supports

forwarding in the opposite direction of traffic. An implementation of AckPBSM was

added to Vertigo in order to support query forwarding, but it is not used in any existing

scenarios, since we have not found a meaningful use case for large target areas. This

section briefly describes the AckPBSM protocol and adaptations made to make it suitable

for Vertigo.

AckPBSM is a broadcasting protocol with two modes of forwarding. In the topology-

based mode of forwarding, a vehicle i that receives a message starts a timer to forward

the message with a low random delay if it deems itself part of the connected dominating

set (CDS), an efficient broadcasting structure first proposed by [Cardei 02]. Receivers

that are not in the CDS start a timer with a higher delay to fall back to if no vehicle in

the CDS was reached. When a receiver sees a message being forwarded to its neighbours

by another vehicle, it cancels its own timer. The second mode of forwarding supported

by AckPBSM is based on acknowledgements of ongoing broadcasts that are added to

beacons until the expiration time (tresult in case of Vertigo). If a vehicle i that received

a message m receives a beacon from vehicle j that does not contain an acknowledgement

for m, then vehicle i starts a timer with a random delay and broadcasts m if no other

vehicle does. A vehicle that moves from a partition A to partition B will therefore quickly

receive any messages that have only been forwarded within B and share messages that

have only been forwarded in A. AckPBSM is meant for unbounded broadcast, but can

be modified for geocast. When geocasting, a receiving vehicle i only starts a timer

to forward a message if i is present in the delivery area, and only reacts to missing

acknowledgements from another vehicle if that vehicle is in the delivery area for the
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message according to the position in its beacon.

In addition to forwarding the query, the responses from vehicles also need to be

forwarded back to the source of the query. To this end, a protocol for end-to-end ac-

knowledgement of geocast can be used [Slot 11a]. The protocol partially avoids the

problem of ACK implosion by aggregating multiple acknowledgements before forward-

ing them. The protocol triggers forwarding of acknowledgements by simulating a timed

wave that goes from the source to the boundaries of the delivery area and back. When

the calculated position of the returning wave passes a vehicle, it forwards its acknowl-

edgement and any acknowledgements it received from other vehicles towards the source.

Acknowledgement are forwarded through (single hop) unicast, the destination of the uni-

cast is a vehicle selected from neighbours that are closer to the source than the sender

using consistent hashing to map the hash of (source identifier, sequence number) to the

hash of the neighbour identifier. It is very likely that two vehicles will choose the same

aggregator if their neighbourhood views overlap, which improves aggregation. The wave

continues towards the original position of the source. When it arrives there, the source

may have moved away. To deal with mobility, the source sends unacknowledged geocasts

towards its original position for the duration of the query (until tresult). In the Vertigo

implementation, acknowledgements can be small responses and membership tuples are

included in messages. The tuples are aggregated by merging them at every hop.

The feasibility of using forwarding in a Vertigo implementation is shown by the

forwarding speed of at least 300m/s found in [Slot 11a], which is far greater than the

maximum speed of vehicles. Provided there are no network partitions, areas could be

arbitrarily large and there would still be enough time to gather membership information

that will only partly be decayed by the time it arrives at the source. Tuples need to be

decayed due to the delay in forwarding, but merging tuples moves the boundaries of the
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membership area further apart. The fractional rate of decay is inversely proportional

to the size of the membership area, which is proportional to the number of vehicles

involved.

4.6 Discussion

Reliable success confirmation is the key aspect of the Vertigo communication model.

Given that the implementation uses explicit acknowledgement, the set of receivers pro-

vided by the result event is reliable, since every vehicle from which a response was

received must have also received the message. The reliability of the membership tuples

relies on the correctness of the inaccuracy bounds of sensors and the correctness of the

road map. The inaccuracy bound should be conservatively adapted to the ability of the

vehicle to obtain accurate readings. For example, if a positioning system lacks the neces-

sary satellite signals for accuracy, this can be reflected by using a high bound or inability

to produce membership tuples. In this way, success confirmation will only be provided

if it is reliable enough to be depended on for safety, even if it may lead to a reduced rate

of success. The evaluation of the Vertigo implementation given in Chapter 6 will show

the bounds on position inaccuracy and sensor range under which Vertigo can achieve a

high rate of success.
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Chapter 5

Application

The Vertigo model exists to help solve the problem of cooperative automated driving.

The demonstrate its applicability to this problem, this chapter gives the design and

implementation of a protocol that uses the Vertigo model to coordinate arbitrary in-

tersection crossings in a safe, distributed manner. The protocol assumes vehicles follow

tracks, which intersect in conflict areas, and uses Vertigo to request an allocation for

entry into a conflict area from surrounding vehicles.

5.1 Tracks

The road network model the application uses is based on tracks, interconnected line

strings. The start and end points of a track lie on other tracks to form a network.

Vehicles move through the road network by following a sequence of tracks, which may

only be followed in one direction. Like road segments in the Vertigo implementation,

tracks have a surface area, which is found by offsetting the line string by half the lane

width in both directions to form a polygon. Unlike road segments, tracks do not form a
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Fig. 5.1: Conflict areas at the intersection of tracks

graph, but tracks can be converted to road segments by splitting the track at the points

where other tracks connect to it, and placing connectors between the segments. Areas

on tracks are represented as a set of track ranges, which are (track id, start offset, end

offset) tuples specifying the part of the track contained in the area. Positions on tracks

are represented as offsets from the start of a track combined with a track identifier.

5.2 Conflict Areas

Vehicles have a road map that contains the full set of tracks that can be followed, as well

as a set of conflict areas. A conflict area is a pair of track ranges that is generated by

intersecting the surface area of one track, with the line string of another. An example

of conflict areas is shown in Figure 5.1. A conflict area represents a place where two

tracks are less than half a lane-width from each other. Vehicles cannot drive through a

conflict area at the same time. A conflict area can therefore be seen as a resource for

which mutual exclusion must hold at all times in order to ensure safety.
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Fig. 5.2: Empty trajectory (green) provides forward distance

5.3 Empty Trajectory

The trajectory of a vehicle is represented as a sequence of tracks to follow from the current

position of the vehicle. A subsequence of length f from the start of the trajectory is

measured as empty using the LIDAR sensors of the vehicle, and is known as the empty

trajectory. The empty trajectory is computed using the one-dimensional empty area as

described in Section 4.4.1. An example is shown in Figure 5.21, in which the yellow line

represents the empty area, and the green line the empty trajectory. The value of f gives

a higher-level notion of forward distance than a pure ranging sensor measurement, since

it also consider turns. The empty trajectory is also used to detect upcoming conflict

areas. If the empty trajectory intersects with a conflict area, f is reduced to the distance

1Map data ©2013 Google
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to the start of the conflict area, unless an allocation for the conflict area is obtained using

the protocol described in Section 5.5.

5.4 Moving Forward

To decide on acceleration and deceleration, vehicles use the Intelligent Driver Model

(IDM) [Treiber 13]. IDM is meant as a model for human driving behaviour in traffic

simulations, but can also be used to make acceleration decisions in automated driving.

The main inputs into the model are the current speed and the distance to the vehicle

ahead, which is obtained by computing the length f of the empty trajectory. The model

also requires the speed of the vehicle ahead, which is derived from repeated distance

measurements.

Under normal circumstances, the driver model is used to decide the acceleration, with

two exceptions that are necessary to deal with stop-and-go in intersections. If the vehicle

has sufficient forward distance, but is nearly stopped (speed is less than 5m/s), then it

uses maximum acceleration to start. If forward distance is approaching the computed

minimum stopping distance of the vehicle, it uses maximum deceleration. The latter is

an important part of preserving safety, which is not guaranteed by IDM.

5.5 Coordination Protocol

When a vehicle approaches a conflict area, it uses a coordination protocol to attempt

to obtain an allocation for a conflict trajectory, which is a specialized data structure for

describing the intentions of the vehicle with regards to conflict areas. A vehicle i sends

an allocation request using Vertigo, asking to enter the conflict trajectory in a specified

time frame. Receivers of the request respond using an accept, reject, or tentative
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message. If all vehicles responded with either an accept or tentative message, it is

safe for the vehicle to proceed enter the conflict areas described in the conflict trajectory,

provided that vehicles that sent a tentative response have passed. The remainder of

this section describes the details of the protocol.

5.5.1 Initiating the Coordination Protocol

While driving, a vehicle i periodically evaluates whether the empty trajectory intersects

with any conflict areas. If a conflict area on the empty trajectory lies less than z

meters away (where z is a configurable parameter), the vehicle initiates the coordination

protocol. By starting the protocol only when a conflict area is in the empty trajectory,

vehicle i is prevented from requesting an allocation for a conflict area before vehicles

directly in front of i. By starting the protocol only when a conflict area lies less than z

meters away, the set of vehicles competing for the same conflict area at the same time is

bounded. A lower z reduces the number of vehicles with which to coordinate, and the

probability of omission failures occurring. However, if z is too low, vehicles will always

have to slow down or stop before being able to start the protocol to obtain an allocation

for a conflict area, which increases their travel time.

5.5.2 Conflict Trajectory

The first step of the coordination protocol is for vehicle i to generate a conflict trajectory

Ti. The conflict trajectory is a sequence of (track range, set of conflict areas) tuples.

The example in Figure 5.3 consists of 5 of these tuples, two of which contain a conflict

area. Each tuple contains the exact set of conflict areas that intersect with the track

range. Note that conflict areas may overlap, leading to different tuples for the parts

where the conflict areas overlap and where they do not overlap. The sequence starts
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Fig. 5.3: A conflict trajectory through 2 conflict areas with a commit area of length

lcommit and stopping distance li + dmin + lcommit

lcommit meters before the first conflict area in the empty trajectory, where lcommit is a

configurable parameter and must be smaller than z. This area is known as the commit

area and entering it is used to signal committing to a conflict trajectory. The sequence

continues until li + dmin + lcommit of conflict-free space is encountered, where li is the

length of vehicle i and dmin the minimum distance vehicles need to keep at all times.

This will provide the vehicle with enough space to stop before - and, if necessary, request

a new allocation of - any subsequent conflict areas. Otherwise, vehicle i might be forced

to stop on one conflict area waiting for another vehicle j on a second conflict area, while

j might be waiting for i, creating a deadlock.

The conflict trajectory can be serialized efficiently for use in messages. Since the

conflict areas are known globally, only a sequence of track ranges has to be serialized,

which consist of a track identifier and 2 offsets, which are serialized as 12 bytes in the

implementation. Construction of a conflict trajectory from a sequence of track ranges is

relatively efficient, since a mapping of track identifiers to tracks is available.

The conflict trajectory is effectively the implementation of an intended action (Q)

as defined in the System Model chapter in Section 3.2.3.
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Fig. 5.4: The allocation state machine exemplified with a conflict trajectory

5.5.3 Allocation State

To keep track of the state of an allocation, a vehicle keeps a state machine shown

in Figure 5.4, which starts in the initial state. After an allocation request is sent

using Vertigo, the state machine is in the pending state. At the result deadline of

the Vertigo query, the state machine proceeds to the obtained state if the request was

successful, or the initial state otherwise, meaning a new allocation request will have

to be made. If the vehicle enters the first track range of the conflict trajectory in the

allocated time frame, then the state machine proceeds to the committed state, or the

initial state otherwise. Finally, once a vehicle moves past the last conflict area in the

conflict trajectory it proceeds to the released state.

5.5.4 Sending an Allocation Request

The conflict trajectory Ti generated by vehicle i is serialized and added to an allocation

request, which also includes a sequence number to identify the allocation, a start time

tstart, and an end time tend. The meaning of an allocation request is that the vehicle is

requesting to enter the first track range in the conflict trajectory (which is in the commit

area) after tstart and before tend. If other vehicles approve and the vehicle enters the

track range in time, it is committed to the conflict trajectory and will eventually be able
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to pass the conflict areas in the trajectory. Otherwise, it needs a new allocation to enter.

The allocation request is sent to other vehicles using the geocast operation offered by

the Vertigo implementation. The result time tresult, target time ttarget, and start time

tstart are each set to tnow + δrequest where δrequest is the length of the time frame of the

request, which is configurable per scenario, but the same for all vehicles. The end time

is set to tnow + δrequest + δcommit, giving the vehicle a configurable time window of length

δcommit to enter the conflict trajectory. Delivery time is not used.

The target area Atarget of the query is selected to be big enough to include all vehicles

that may be competing for an allocation of the same conflict area before tresult when

vehicle i processes the message, or already have an allocation. The initial (range-based)

area consists of the set of track ranges in the full set of conflict areas C in Ti. Vehicles

in a conflict area certainly have an allocation for the conflict area, since they would not

have entered otherwise. Vehicles in front of the conflict areas (in the opposite direction

of travel) may have obtained or requested an allocation.

The required target area is bounded by the fact that vehicles may only request an

allocation within z meters of a conflict area. However, it also needs to be considered

that when vehicles construct a conflict trajectory, it may pass through multiple conflict

areas in search of conflict-free space. It is therefore possible for vehicles to request an

allocation for a conflict area that is more than z meters away, if the conflict area is less

than li+dmin+lcommit away from other conflict areas. The solution is to expand the initial

area by li+dmin+lcommit in the opposite direction of travel using an expansion algorithm

similar to the one described in Section 4.5.1, but for track ranges. The expanded area

may intersect with conflict areas that were not in the original conflict trajectory. In that

case, the expansion is repeated from the set of conflict areas C now covered by the area,

until the expansion no longer adds any new conflict areas to C.
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Fig. 5.5: Delivery area (blue) expanded from conflict areas

The area obtained by taking the union of the track ranges in the conflict areas

in C is expanded by z to include all vehicles that might be competing for one of the

conflict areas at the same time. Since some vehicles might start a query too early due

to their position inaccuracy, a further expansion of αposition, representing the worst-case

position inaccuracy vehicles might have, is made. Finally, the Vertigo implementation

will expand the target area to a delivery area by correcting it for the time until ttarget,

which is δrequest. The final set track ranges in the conflict areas in C is therefore expanded

by z+ vmax× δrequest +αposition in the opposite direction of travel to obtain the delivery

area containing all vehicles that might have an allocation or might be competing for an

allocation of one or more of the conflict areas in Ti. Figure 5.5 shows an example of a

delivery area (blue) expanded from a set of conflict areas in the middle of the intersection.
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5.5.5 Receiving an Allocation Request

When a vehicle j receives an allocation request from vehicle i containing conflict tra-

jectory Ti through the receive event offered by the Vertigo model, j can respond with

one of three answers: accept, reject, or tentative. An accept response means the

receiver will permit the sender to proceed with entering into Ti in the specified time

window, a reject response means it will not. A tentative response means the receiver

will allow the sender to proceed after the receiver has passed the conflict areas in Ti, or

released its own allocation. A tentative response also contains the sequence number

of j’s current allocation, such that the i can find the conflict trajectory Tj from a prior

allocation request by j. If i never received such a request, a tentative response is

treated as a reject response.

Which response vehicle j sends depends to an allocation request r on its own allo-

cation a. To choose a response, vehicle j applies the following logic:

given: a ∈ Allocation, state ∈ AllocationState.

func chooseResponse(r ∈ AllocationRequest).

if state = initial ∨state = released then

return (accept).

end if

if |a.C ∩ r.C| = 0 then

return (accept).

end if

if state = pending then

if a.tresult < r.tresult then

return (reject).
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else if a.source < r.source then

return (reject).

end if

state← released.

return (accept).

end if

if state = obtained ∨state = committed then

return (tentative,a.sequence number)

end if

end chooseResponse.

A few details such as the definition of allocations are omitted here. C gives the set

of conflict areas in the conflict trajectory of the allocation (request). If vehicle j has no

allocation or the set of conflict areas in its allocation does not intersect with the set of

conflict areas in the received allocation request, the receiver sends an accept response to

vehicle i. Otherwise, if j’s allocation is already in state obtained or committed, it sends

a tentative response to i, creating a dependency of i’s allocation on j’s allocation. In

the case where j is in the process of requesting an allocation (in state pending) for one

or more of the same conflict areas, the vehicle whose allocation has the lowest tresult

wins, or otherwise the vehicle with the lowest identifier (in source) wins. If j is this

vehicle, it sends a reject response to i. Otherwise, it sends an accept response and

releases its own allocation. In both cases, i will make the opposite decision.

5.5.6 Obtaining an Allocation

A vehicle i that sends an allocation request can only continue into conflict trajectory

Ti if all vehicles respond with either an accept or tentative response. At time
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tresult, the Vertigo implementation passes back the set of receivers R and member-

ship tuple M(M,A, t) back to the application in a result event. If it is true that

R ⊇M ∧A ⊇ Atarget (no omission failures), no reject responses were received, and the

vehicle has previously received allocation requests for the sequence numbers contained in

tentative responses, then the allocation request succeeded and the allocation moves to

state obtained. The state obtained gives vehicle i permission to enter into the conflict

trajectory Ti between tstart and tend.

5.5.7 Spatial Commit

The state of an allocation proceeds to committed when a vehicle i moves into the commit

area of conflict trajectory Ti between tstart and tend. Vehicle i must ensure that it is

unambiguously inside (overlapping with) or outside (not overlapping with) the conflict

trajectory at tend, considering the inaccuracy of positioning sensors, its current speed,

and ability to accelerate and decelerate. Once an allocation is committed, the vehicle

will eventually be able to move to the end of the conflict trajectory. If vehicle i fails to

enter the conflict trajectory before tend, because it did not maintain enough speed for

instance, then the allocation is moved to state released and vehicle i must restart the

coordination protocol to obtain a new allocation. To simplify verification, the vehicle

must wait at least another δ before restarting.

Vehicle i moving into the conflict trajectory can be seen as a transaction. At tend,

vehicle i is either inside or outside the area. It is the responsibility of vehicles whose

allocation depends on i’s allocation to check whether or not i is in the conflict trajectory.
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5.5.8 Resolving Allocation Dependencies

Once in the commit area of a conflict trajectory, a vehicle i computes the allocated

distance, which is the length of the sequence of track ranges in the conflict trajectory for

which all dependencies have been resolved for all conflict areas. A conflict area c has an

unresolved dependency if at least one of the vehicles that sent a tentative response has

yet to pass the conflict area, based on its last-known position obtained from beacons.

To compute the allocated distance, vehicle i iterates through the track ranges in the

conflict trajectory and for each track range it determines whether there is a conflict area

with an unresolved dependency, in which case the sequence stops at the start of the

current track range. To determine whether there is a conflict area with an unresolved

dependency, the vehicle iterates through every (not yet processed) conflict area c and

looks up its dependencies, which are allocation requests whose sequence number was

contained in a tentative response from a vehicle j and whose conflict trajectory Tj also

passes through the conflict area c.

Vehicle i makes several attempts to resolve dependencies for a conflict area c using

information from the beaconing service and the membership service. If a position beacon

has been received from vehicle j showing that j was outside of the conflict trajectory after

tend, the dependency is resolved. Either vehicle j made it past the conflict trajectory or

it failed to enter in time. In either case, it is no longer a dependency for any conflict area

that vehicle i is about to enter. If a recent position beacon is available that shows the

vehicle is still on the conflict trajectory, the set of conflict areas Cj that still lie ahead

of vehicle j in its conflict trajectory is computed. The dependency is resolved if c /∈ Cj ,

and unresolved otherwise.

In a worst-case communication scenario, vehicle j might have already left the area
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without communicating its latest position. In that case, the membership service can

be used to confirm the absence of vehicle j from the conflict trajectory. If a tuple

M(M,A, t) can be found for which A ⊇ Tj and j /∈M , confirming that j is no longer in

Tj , the dependency is resolved. The membership service allows the system to progress,

even in the presence of unbounded omission failures of communication from vehicle j

to i.

The length of the sequence of track ranges for which all dependencies have been

resolved or discarded is used as a virtual distance measurement when determining the

speed of a vehicle (though a shorter, real distance measurement may override it). An

unresolved dependency thus acts as a ”brick wall”, which would cause the vehicle to

have to stop. In practice, this translates into the vehicle waiting for another vehicle to

pass, and accelerating once it has. Thus, a common behaviour for vehicles is achieved

through a series of logical steps.

Once vehicle i passes the last conflict area in the conflict trajectory, its allocation is

moved to state released and the vehicle can return to regular driving until it encounters

another conflict area.

5.6 Formal Analysis

The main concern of the coordination protocol is to guarantee mutual exclusion with

regards to conflict areas: no two vehicles can be in the same conflict area at the same

time. The way the protocol achieves this is by creating an ordering between allocations

of a particular conflict area. The ordering is represented as a distributed dependency

graph between allocations that is constructed through tentative responses. A vehicle

may not enter a conflict area until it has confirmed that all of the vehicles on which its
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allocation depends have either passed the conflict area or released their allocation.

No two vehicles may obtain an allocation of a conflict area without an ordering

being defined between their allocations. This is achieved by ensuring that any vehicle

requesting an allocation needs confirmation from all vehicles that might be requesting

an allocation of the same conflict area at the same time, or have already obtained or

committed to an allocation of the conflict area. The delivery area is expanded to be big

enough to include all these vehicles as described in Section 5.5.4.

The remainder of this section gives a proof by exhaustion showing that no two vehicles

i and j that are in each other’s delivery area can have an allocation in state obtained

or committed for the same conflict area at the same time without an ordering being

defined between them.

Let vehicle i send an allocation request at tgi (geocast event) with the result deadline

set to tri (result event), and vehicle j send an allocation request at tgj with the result

deadline set to trj . Without loss of generality, assume tri ≤ trj . Since δ = tresult−tgeocast

is the same for all vehicles, and vehicles must wait at least δ when restarting the protocol

after a failed commit, the time frames of the allocation requests of i and j can only

overlap on one side. Vehicle i could not start another query before trj if for i’s first

query tri > tgj . This leading to small number of possible cases with regards to the order

of events. In the special case where tri = trj , the unique identifiers of i and j determine

priority, whereas in all other cases i takes priority, being the vehicle with the lower tresult.

The time at which the receive event for the allocation request from j occurs at i is

denoted tj→i, and the time at which the receive event for the allocation request from i

occurs at j is denoted ti→j . Events at a single vehicle are processed atomically, and can

therefore not have the same time.

The case in which communication is not successful is covered by the fact that positive
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(a) tri < tgj (b) tgj < tri < trj ∧ ti→j < tgj ∧ tj→i < tri

(c) tgj < tri < trj ∧ ti→j < tgj ∧ tj→i > tri (d) tgj < tri < trj ∧ ti→j > tgj ∧ tj→i < tri

(e) tgj < tri < trj ∧ ti→j > tgj ∧ tj→i > tri (f) tgi = tgj ∧ tri = trj

Fig. 5.6: Scenarios for concurrent allocation requests by vehicles i and j

responses from all vehicles are required for an allocation to proceed to state obtained.

An omission failure is detectable using Vertigo and will proceed the state machine to

state released, creating no conflict. Table 5.6 gives all the scenarios for two allocation

requests for the same conflict area in case communication is successful. For clarity,

timelines and communication of vehicles i and j are shown in Figures 5.6 in which the

thick line represents the period between tgeocast and tresult.

Table 5.1: Scenarios for concurrent allocation requests

Let tri < tgj :

Vehicle j in state initial at ti→j , responds accept to i
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Let vehicle i release the allocation before tj→i:

Vehicle i in state released at tj→i, responds accept to j

Such that j may proceed to state obtained, and i proceeded to state released.

Otherwise:

Vehicle i in state obtained or committed at tj→i, responds tentative to j

Such that both may proceed to state obtained, but j depends on i.

Let tgj < tri < trj :

Let ti→j < tgj ∧ tj→i < tri:

Vehicle j in state initial at ti→j , responds accept to i

Vehicle i in state pending at tj→i, responds reject to j

Such that i may proceed to state obtained, and j proceeds to state released.

Let ti→j < tgj ∧ tj→i > tri:

Vehicle j in state initial at ti→j , responds accept to i

Let vehicle i release the allocation before tj→i:

Vehicle i in state released at tj→i, responds accept to j

Such that j may proceed to state obtained, and i proceeded to state released.

Otherwise:

Vehicle i in state obtained or committed at tj→i, responds tentative to j

Such that both may proceed to state obtained, but j depends on i.

Let ti→j > tgj ∧ tj→i < tri:

Vehicle j in state pending at ti→j , responds accept to i, statej ← released

Vehicle i in state pending at tj→i, responds reject to j
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Such i may proceed to state obtained, and j proceeded to state released.

Let ti→j > tgj ∧ tj→i > tri:

Vehicle j in state pending at ti→j , responds accept to i, statej ← released

Let vehicle i release the allocation before tj→i:

Vehicle i in state released at tj→i, responds accept to j

Such that both proceeded to state released.

Otherwise:

Vehicle i in state obtained or committed at tj→i, responds tentative to j

Such that i may proceed to state obtained, and j proceeded to state released.

Let tri = trj :

Let i < j:

Vehicle j in state pending at ti→j , responds accept to i, statej ←released

Vehicle i in state pending at tj→i, responds reject to j

Such that i may proceed to state obtained, and j proceeded to state released.

Let i > j:

Vehicle j in state pending at ti→j , responds reject to i

Vehicle i in state pending at tj→i, responds accept to j, statei ←released

Such that j may proceed to state obtained, and i proceeded to state released.

In all cases, either no vehicle proceeded its allocation to state obtained, only one

of them did, or j was made aware of its dependency on i. Given that a tentative

response is only sent by vehicle i when tri < trj , an allocation will only ever depend

on allocations requests that preceded it. The protocol is therefore free of cycles in the

dependency graph and thus free of deadlocks if fully synchronized clocks are assumed. A

protocol and proof for partially synchronized clocks (e.g. using TrueTime [Corbett 12])
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is beyond the scope of the thesis, but a topic of future work.

5.7 Discussion

The protocol presented in this chapter arbitrates arbitrary intersection crossings using

Vertigo. Mutual exclusion with regards to conflict areas is achieved by creating a strict

ordering between allocations, by constructing a distributed, cycle-free dependency graph

through tentative responses. If requests are concurrent, one side will forfeit its alloca-

tion and retry later. Safety is preserved in the presence of unbounded omission failures,

since they can be detected using the Vertigo communication model. Progress is not

guaranteed in the case of unbounded omission failures, since communication may never

succeed at all, but the membership service can be used to handle cases where a vehicle

leaves an area without further communication.
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Chapter 6

Evaluation

In this chapter, the feasibility and applicability of the Vertigo communication model are

further demonstrated and characterized. Feasibility is characterized by the conditions

under which success can be achieved by the implementation from Chapter 4 in terms

of communication and sensing capabilities, and traffic density. Applicability is charac-

terized by the performance of the distributed coordination protocol from Chapter 5 as

an intersection management solution compared to traditional approaches. Simulations

of the Vertigo implementation and the coordination protocol show that success rates

can be achieved that are sufficiently high to enable the coordination protocol to achieve

better traffic flow than regular traffic lights, with relatively conservative sensing and

communication capabilities.

6.1 Evaluation strategy

The Vertigo implementation cannot be easily studied in isolation. It is meant specifically

for cooperative automated driving applications in which vehicles coordinate their driving
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decisions with each other. The specific situation in which Vertigo is used by the appli-

cation largely determines how well it performs. The performance of Vertigo depends on

the environment, such as the line-of-sight of ranging sensors, as well as the behaviour of

the vehicles themselves that lead to certain positions, speeds, and channel utilization.

Generic mobility models cannot be used for evaluation, since they allow overlap between

vehicles, which would create impossible sensing situations. Vertigo can only be studied

in the context of a functional coordination application that preserves safety. The sce-

nario used to evaluate the Vertigo implementation is a four-way intersection managed

using the distributed coordination protocol from Chapter 5.

A series of simulation experiments characterizes the relationship between the oper-

ating environment, the success rate of Vertigo, and progress in the scenario using the

coordination protocol. The environment in which the Vertigo implementation operates,

particularly the available hardware capabilities, can affect its performance in multiple

ways. Low transmission power can cause omission failures over longer ranges, while re-

duced sensor range makes it harder to obtain sufficient membership information. High

traffic density can cause the wireless network to become over-utilized. High position-

ing uncertainty reduces the likelihood of obtaining sufficient membership information.

The effects of these factors on success rate and the resulting traffic flow are studied

in a set of parameter studies, finding the minimal conditions under which the Vertigo

implementation can operate in the intersection scenario.

The challenge for any automated driving system is not just to preserve safety, but to

do so while making progress towards certain goals, in this case crossing an intersection.

Without progress, safety is trivially achieved as no vehicles are moving. While optimizing

traffic flow is not a particular goal of this thesis, the rate of traffic achieved using the

coordination protocol is compared to the traditional intersection management approach
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Fig. 6.1: A simulation in roundasim with cars shown in red

of traffic lights to demonstrate that Vertigo can achieve success rates high enough to

implement a feasible traffic management solution and is thus applicable to this domain.

6.2 Simulator

The evaluation makes use of a novel simulator called roundasim. It is so named because

it was originally intended for a roundabout scenario, but no coordination solution is

currently available for the roundabout. The simulator has since evolved into a general

purpose cooperative automated driving simulator with communication, sensors, software

services, visualizations (see Figure 6.11), and a tool to draw traffic scenarios with arbi-

trary roads and buildings. The network simulation library SWANS [Barr 05] has been

integrated to provide wireless network simulation. The simulator can be run and viewed

1Map data ©2013 Google
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using a web browser at http://thesis.marcoslot.net/.

A number of alternative simulators were explored for evaluation, but none have the

required combination of simulating actuators, sensors, and wireless networking, or lack

visualization, scale, or a fine-grained model of time. Microscopic traffic simulators such

as VISSIM [Fellendorf 01] and SUMO [Behrisch 11] use fixed time steps, meaning all the

cars move forward by a fixed amount of time. This behaviour may be appropriate for

evaluating traffic flow, but the fidelity of interactions in cooperative automated driving

is lost in the coarseness of the time steps. VISSIM has a minimum time step of 100

milliseconds, while SUMO has 1 second time steps. Conversely, wireless communication

happens on a nanosecond scale. Network simulators such as ns-2 [Chen 06] and OP-

NET [Chang 99] use a queue of events ordered by a discrete execution time, allowing for

arbitrarily small time steps. However, they do not model continuous movements. While

the two simulation models are not fundamentally incompatible, synchronization between

a fixed time step simulator and a discrete event simulator is complex and error-prone.

We have attempted such an integration between OPNET and VISSIM in [O’Hara 12],

but it was lacking in performance, flexibility, and visualization, making it a difficult

environment in which to write complex distributed algorithms. Visualization is partic-

ularly important for viewing the spatial interactions between vehicles when debugging

coordination or control algorithms.

Robotics simulators such as Microsoft Robotics Studio [Jackson 07] typically use a

real-time execution model, in which simulation time follows the system clock and can

be viewed at a normal speed. Objects are moved forward in iterations based on the

system clock time that has passed since the start of the last iteration. The drawback of

this model is that the fidelity of the simulator may depend on the performance of the

computer and the simulation may break when unable to keep up with real time. PreScan
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is a simulator for Advanced Driver Assistance Systems [Hendriks 10], with fine-grained

simulation of vehicle dynamics and sensors, and visualization tools. It uses fixed time

steps at a high granularity. Simulations can run in real time, but degrade gracefully.

Unfortunately, PreScan has only has very basic simulation of wireless networking, and

lacks scalability. Vehicles cannot be added or removed dynamically.

Roundasim is based on the lessons from working with the different types of simula-

tors described (fixed time step, discrete event, real-time). Control logic, simulation logic,

sensors, and wireless communication events are executed using a discrete event queue.

Before an event is executed, the ’physical’ world is moved forward by the amount of

simulation time since the last event by recomputing the positions and velocities of all

vehicles, based on current speed, acceleration, and trajectory. Alternatively, the simu-

lation can run in a real-time mode to allow visualization. In this case, the simulation

state moves forward from a point in time in one continuous block (time in between dis-

crete events) to another based on the system clock time that has passed since the last

iteration, executing all events and blocks in between. If the computer is too slow to run

the simulation in real-time, this has no negative impact on the fidelity of the simulation

itself. However, visualizations may look less smooth.

6.2.1 Driving

Driving in roundasim is simulated through the use of tracks, interconnected 2D line

strings that are generated from Bézier curves. The position, speed, and acceleration of

a vehicle are defined in one dimension, as an offset on a track. This allows extremely

efficient motion simulation by simply increasing the offset, while avoiding the need for

explicit steering simulation. The one-dimensional offset can be translated into a two-

dimensional position by taking the point and orientation on the line string at the given
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offset. The point, which represents the back of the vehicle, and the orientation can be

translated into a polygon to give the two-dimensional outline of the vehicle. The outline

of a vehicle is only computed when the vehicle is observed using another vehicle’s ranging

sensor or is required for visualization. These techniques make the simulator efficient

enough to update the physical world before every event, while still supporting real-time

visualization of large-scale scenarios.

Every track starts and ends at a given offset on another track, unless the track is at

the beginning or end of a scenario. By default, a vehicle will proceed onto the track to

which its current track connects once it reaches the end of its current track. However, the

vehicle can also switch to tracks that start ahead of it on its current track. A queue of

track identifiers is kept for every vehicle. A vehicle proceeds to a track starting directly

ahead of it when the identifier of the track is at the head of the queue. A vehicle can

steer itself by pushing track identifiers of upcoming track starts onto the queue.

To move forward, a vehicle i sets its acceleration ai, which may be negative in case

of deceleration. When the state of the physical world is moved forward by ∆, then for

a starting speed of vi, the distance driven is computed as vi × δs + 0.5× ai × δ2s , where

δs = max(∆, (vmax − vi)/ai, vi/ − ai), since the acceleration only continues until the

vehicle reaches the maximum or minimum speed after which acceleration becomes 0.

After the update, the new speed of the vehicle is vi + ai × δs.

6.2.2 Sensors

Roundasim implements the sensor interfaces from Appendix B for position, orientation,

and ranges (LIDAR). Position and orientation values can be taken directly from the

state of the simulation or computed from the current position on a track. A vehicle

has a set of ranging sensors defined, each with a specific position and orientation on
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the vehicle, and a given number of beams, angular resolution, and range. The layout

used in experiments is the one shown in the example in Figure 4.4 in Chapter 4. Each

vehicle has 4 sideways single-beam sensors on the sides and two 180◦ sensors on the front

and back. Simulation of ranging sensors is performed through ray casting, searching for

intersections between line segments that represent LIDAR beams and the outlines of

other vehicles or buildings. The outlines of vehicles are rectangles of 4.12 by 1.83 meters

(frequently mentioned, though non-reputable values for the average length and width of

cars). The simulator allows buildings to be defined as arbitrary polygons. Ranging sen-

sors are simulated every 100ms. Delay between different rays or sensors is not currently

simulated.

6.2.3 Wireless ad-hoc network

The wireless network in roundasim is simulated using SWANS [Barr 05] (Scalable Wire-

less Ad-hoc Network Simulator), a Java library for simulating an ad-hoc 802.11 network.

It is normally used in combination with JiST, a virtual machine simulator. The JiST

execution model used by SWANS is not entirely compatible with a discrete event sim-

ulator that uses explicit scheduling, but the modifications to make SWANS compatible

with roundasim are minor. The parameters used to configure SWANS are taken from

the 802.11p standard for wireless access in vehicular environments [IEEE 10]. Rayleigh

fading and two-ray propagation [Proakis 08] are used to model the physical channel.

Control software running in the simulator uses SWANS through the generic unicast,

broadcast, and receive interfaces defined in Appendix B.
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Fig. 6.2: Tracks and buildings on the Merrion Square intersection shown in gray

6.2.4 Scenario

The scenario used in the experiment is modelled after a four-way intersection near Mer-

rion Square in Dublin, Ireland. In the simulated scenario, tracks are defined for the

roads, left turns, and crossings, as shown in Figure 6.2. No right turns are defined to

allow for comparison between vehicles using Vertigo for coordination and vehicles that

only drive based on forward-looking distance and traffic lights. Without coordination,

vehicles turning right might collide with vehicles driving in the opposite direction.

In the regular scenario, vehicles use Vertigo and the coordination protocol to cross

the intersection. The results of this scenario are compared to one in which traffic lights

are used to manage traffic. The traffic lights switch between the East-West and North-

South directions. The phases of the traffic lights are 60 seconds on green, 3 seconds on

orange, and 2 seconds on double red, before switching directions. These values are based
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on the actual traffic lights on the Merrion Square intersection, and therefore represent

the traffic management solution in use today.

Vehicles are added to the scenario at the start of tracks going towards the intersection.

The intervals between new vehicles being added follows a Poisson distribution with a

configurable rate. Whenever a vehicle is added, the direction from which a vehicle arrives

and the direction it takes on the intersection (left or straight) are chosen randomly. If

another vehicle is close to the entry point, such that the minimum distance between

vehicles would be violated by adding a vehicle, then the new vehicle is omitted. The

actual entry rate may therefore be lower than the offered entry rate, as some vehicles

are omitted. When the intersection is at maximum capacity, queues will form in front

of it, and vehicles are only added when there is enough room in the queue. The actual

rate of entry will therefore be roughly the same as the rate of departure.

6.2.5 Controller

The main purpose of the simulator is to evaluate a (cooperative) automated driving

controller, a piece of software running on a computer inside the vehicle that can access

its sensors, actuators, and networking equipment. The controller can set the acceleration

and the sequence of tracks to follow and can use the sensors, wireless network, and road

map. Two controllers are used in the evaluation. The first one uses the implementations

of the coordination protocol and Vertigo defined in the previous chapters to guarantee

mutual exclusion for conflict areas. The second controller ignores conflict areas, but only

enters the intersection during the time interval in which the traffic light for its direction

is green. Both controllers use the Intelligent Driver Model [Treiber 13] to decide on

acceleration.
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6.3 Experiments

This section describes the experiments performed to evaluate the Vertigo implementation

and the coordination protocol. Metrics of key interest are the average success rate of

Vertigo queries, the network overhead as the average bitrate of transmissions, the average

rate of traffic, and the time vehicles need to cross the intersection as a distribution. These

metrics are studied across multiple runs while varying one of the environment parameters

that could affect the performance of the Vertigo implementation. The parameters studied

in the experiments are the transmission power of the WLAN adapter, the range of the

LIDAR sensors, the inaccuracy of the position sensor, and the rate at which traffic enters

the scenario. While varying one parameter, the other parameters are set to the default

values listed in Table 6.1.

The default LIDAR range of 30m is chosen as it is the advertised range of the SICK

LMS 291 that was commonly used in the DARPA Grand Challenge in 2005 [Buehler 07],

which is what the simulated LIDAR model is based on. More modern LIDARs, such as

the Velodyne LIDARs used in the DARPA Urban Challenge in 2008 [Buehler 09], can

work reliably at ranges of 60m or more, but a more conservative range is sufficient. The

default position inaccuracy of 1.5m is based on the inaccuracy bounds of the combined

GPS and intertial positioning system by [Huang 06]. Both the LIDAR range and the po-

sition inaccuracy are deliberately based on older types of sensors to show the feasibility

of achieving sufficiently high success rates using less capable sensors. The default entry

rate of 20 vehicles per minute is low enough not to overload the intersection, but high

enough to have a significant number of vehicles cross the intersection in an hour of simu-

lation time (over 1000). The WLAN transmission power is based on the recommendation

that was found experimentally, as described in Section 6.3.4.
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The coordination protocol has a number of configurable parameters, listed in Ta-

ble 6.1 (z, b, δrequest, δcommit, vmax, amax, and amin). The values are chosen in con-

junction with each other. For example, if a vehicle drives at a speed of 20m/s (vmax)

and starts the coordination protocol at a distance of 25m (z) from a conflict area waits

200ms (δrequest) to decide whether to continue, it has a distance of 21m to the conflict

area at tresult, which would be sufficient to stop at a speed of vmax and a deceleration of

10m/s2 (amin). The time between tend and tstart of 1.3s gives the vehicle enough time to

reach the conflict area before tend. The beaconing rate of 5Hz (b) follows from the fact

that all vehicles will have beaconed their membership information at least once between

tgeocast and tresult. Thus, this particular combination of application-specific parameters

allows vehicles to cross the intersection at maximum speed, with minimal overhead in

terms of beaconing and the size of the delivery area.

Table 6.1: Default values for simulation parameters

Parameter Value

LIDAR range 30m

Position inaccuracy 1.5m

Entry rate 20 vehicles / minute

WLAN transmission power 10dBm

Start distance for coordination protocol (z) 25m

Beaconing rate (b) 5Hz

Time between tresult and tgeocast (δrequest) 200ms

Time between tend and tstart (δcommit) 1300ms
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Maximum speed (vmax) 72km/h or 40m/s

Maximum acceleration (amax) 10m/s2

Maximum deceleration (amin) -10m/s2

Simulations are run in blocks of 1 hour of simulation time and repeated for 5 different

random number generator seeds. Blocks of 1 hour are chosen primarily as a number that

allows for hundreds of Vertigo queries per run, while not taking so long to simulate that

it becomes infeasible to do many different runs. The experiments for LIDAR range,

position inaccuracy, and entry rate are repeated for comparison to the traffic lights

scenario.

6.3.1 LIDAR range

The maximum distance that can be measured reliably using ranging sensors directly

affects the membership area that can be obtained. In general, it is expected that a

higher maximum range leads to better results. If the maximum range is too short,

vehicles cannot cover the target area of geocasts with their LIDAR beams, which would

prevent any progress. The maximum range is evaluated by cutting off simulated LIDAR

beams at the given distance. The effects of the maximum range on the performance

of Vertigo and the coordination protocol are studied by varying it from 10m to 60m in

steps of 5m in 11(steps)×5(seeds) simulation runs. In addition to the empty areas that

are used for membership, the maximum LIDAR range also affects the regular forward-

looking distance of vehicles. The results from the traffic light scenario are provided to

show the extent to which regular driving is affected by a short maximum LIDAR range.

An average success rate of Vertigo queries of 70% or higher is achieved when the

maximum LIDAR range is over 30m as shown in Figure 6.3. Below this range, many
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Fig. 6.3: The average success rate of Vertigo queries for different LIDAR ranges
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Fig. 6.4: The average network overhead (over all vehicles) for different LIDAR ranges
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queries fail, which drives up the channel overhead as the number of vehicles waiting

increases and queries need to be retried. A reduced rate of traffic can be sustained with

maximum LIDAR ranges as low as 15m. At low LIDAR ranges, vehicles become unable

to cross the intersection by themselves as their LIDAR does not cover the target area of

a geocast, even when standing near the intersection. However, a vehicle i can still make

progress if there are other vehicles on or near the intersection whose LIDAR beams cover

the remainder of the target area of i’s queries, because the empty areas generated from

their LIDAR data will be merged into vehicle i’s membership view. Below 15m, vehicles

can no longer cover the full intersection and no progress can be made. The traffic light

scenario is also affected in this case, since vehicles can only move very slowly when only

able to look 10m ahead (minus 1.5m position inaccuracy and 1m LIDAR inaccuracy as

discussed in Section 4.4.1.2).

At the default LIDAR range of 30m, the median travel time of vehicles using Vertigo

and the coordination protocol is ∼ 23% lower compared to traffic lights and as much as

40% for the most optimal maximum range of 35m. Importantly, the variance in travel

times is also much lower when using Vertigo and the coordination protocol. This shows

the effectiveness of the coordination protocol as a traffic management solution and the

applicability of Vertigo to that domain.

An unanticipated result is that worst-case travel times increase slightly for greater

LIDAR ranges as shown in Figure 6.6, despite an increase in success rate and traffic rate.

One drawback of a greater maximum LIDAR range is that it requires a greater number

of road segment boundaries to represent. The network overhead shown in in Figure 6.4

is roughly 20% higher when the maximum LIDAR range is 60m, when compared to a

maximum LIDAR range of 35m. However, this effect is not significant enough to explain

travel time increases, as it does not cause queries to fail. The actual reason for the

113



slight travel time increase is vehicles querying to early. If a vehicle i is approaching

the intersection without any vehicles ahead of it, it opportunistically sends an allocation

request for a conflict trajectory as soon as it is within 25m of a conflict area with the end

time for entering the conflict trajectory tend set to tnow + 1.5s, where tnow is the time at

which i sends the allocation request. Unless vehicle i can maintain a speed of 60km/h or

greater, it will not reach the commit area in time to commit to the allocation. For lower

LIDAR ranges, queries made early are more likely to fail, because the LIDAR sensors

of the vehicle itself cannot cover the target area of the geocast by themselves. However,

those vehicle can retry quickly, since their allocation is released at tresult. Vehicles whose

query succeeds, but fail to reach the commit area in time, do not rety until after tend

and have to stop and wait for a new allocation request to complete successfully. This

problem can be solved by a more optimal application that takes speed into account when

deciding whether to make a query.

6.3.2 Position accuracy

The algorithm for computing the empty area from which membership tuples are derived

takes a worst-case bound on position inaccuracy into account by reducing the size of the

empty area as described in Section 4.4.1.2. The gaps that vehicles create in each other’s

empty areas will be bigger as position inaccuracy grows, to the point where the empty

areas measured by vehicles no longer overlap. When this happens, the membership area,

constructed by decaying and merging the empty areas from neighbours, may have gaps

that lie in the target area of the geocast, in which case success cannot be confirmed.

The effects of the position inaccuracy bound are studied by varying it from 0m to

5m in steps of 0.5m in 11(steps) × 5(seeds) simulation runs. The average success rate

of Vertigo queries across all runs for a given inaccuracy bound is shown in Figure 6.8.
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Fig. 6.7: An example of position inaccuracy being too high to continue

The success rate remains relatively stable until inaccuracy goes over 2m. Above 2m of

inaccuracy, the success rate heavily deteriorates. At the same time, the network overhead

shown in Figure 6.9 more than doubles up to 125Kbps, as vehicles keep retrying queries

in order to obtain an allocation. While the success rate drops to 43% for an inaccuracy

bound of 3m, the traffic flow is almost unaffected. Vehicles successfully retry queries,

allowing them to make progress despite a low success rate. However, travel times increase

as vehicles may need multiple attempts to obtain an allocation.

At 4.5m position inaccuracy or more, no progress is made due to a combination of

two factors. The position inaccuracy is so high that the membership area always contains

gaps and no queries can succeed, thus no progress can happen. However, vehicles do

not make any progress in the traffic lights scenario either. The reason is that when a

vehicle i measures an empty area, other vehicles create gaps that are large enough to

reach the track vehicle i is on as shown in Figure 6.7. The yellow line is the empty area

after correcting it for inaccuracy. The green line the empty trajectory derived from the
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Fig. 6.8: The average success rate of Vertigo queries for different position inaccuracies
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Fig. 6.11: Quartiles of the travel time for different position inaccuracies
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empty area. The empty trajectory is cut short by the gap in the empty area created by a

vehicle driving in the other direction and the inaccuracy about its precise whereabouts.

The short forward-looking distance causes vehicles to no longer deem it safe to drive

forward. This problem is specific to the use of the ’empty trajectory’ by the application,

but can be generalized by making the observation that the accuracy has become too

low for vehicles to distinguish between lanes. Automated vehicles require positioning

that is at least accurate enough to follow lanes according to [de Nooij 10], who define an

inaccuracy bound of 10cm.

6.3.3 Offered rate of entry

Traffic density affects Vertigo’s performance in various ways, such as the number of si-

multaneous queries, the number of receivers and members, the number of line-of-sight

obstacles, and the ability of the coordination application to obtain approval for its in-

tentions. To study the effects of traffic density, the offered rate of entry is varied from 10

vehicles/minute to 100 vehicles/minute in steps of 5 in 19(steps)× 5(seeds) simulation

runs. As previously explained, the actual rate of entry converges to the rate of departure,

due to the fact that additional vehicles cannot be added when there is a long queue of

vehicles in front the intersection.

Perhaps the most important observation when increasing the entry rate is the point

at which the intersection reaches its maximum capacity. As shown in Figure 6.14, the

intersection managed using Vertigo reaches a throughput of ∼ 37 vehicles per minute,

which is a 25% increase from the throughput achieved using traffic lights of ∼ 30 vehicles

per minute. This shows the potential of using Vertigo for cooperative automated driving

to improve the efficiency of traffic. Due to the effects of queuing, travel times increase

significantly for high entry rates as shown in Figure 6.15, but the median is still as much
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as 40% lower than the travel time for ordinary traffic lights.

The average success rate shown in Figure 6.12 remains relatively stable for higher

entry rates, showing Vertigo can scale to a large number of vehicles. Overhead is sig-

nificantly impacted by an increase in the number of vehicles as shown in Figure 6.13.

The increase is more than linear, since query and beaconing traffic increase linearly, but

traffic from responses increases quadratically. However, at the point where the entry and

departure rates converge to ∼ 37 vehicles/minute, the overhead also stabilizes due to

the fact that the number of vehicles being added to the scenario is reduced. Ultimately,

the overhead is bounded by the maximum density of vehicles, based on their size and

minimum distance, and the size of the target area of geocasts. Vertigo only needs to

scale to a bounded number of vehicles.

6.3.4 WLAN Transmission power

The wireless network standard 802.11p [IEEE 10] defines 4 power classes:

� Class A: 1mW (0 dBm)

� Class B: 10mW (10 dBm)

� Class C: 100mW (20 dBm)

� Class D: 750mW (28.8 dBm)

It is up to regulators to decide under which circumstances each power class can be

used, which is not yet clearly defined. The effects of using each of the power classes is

studied in 4(classes)×5(seeds) simulation runs. For the purpose of evaluation, a greater

transmission power means message transmissions can be successful over a greater range,

but collisions also become possible over greater distances.
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Figure 6.16 shows a slight drop in success rate for the lowest transmission power of

1mW. This drop has no significant effect on traffic rate or overhead, and the graphs for

them are omitted. The only noticeable effect is a slight increase in travel time shown in

Figure 6.17. When transmission power is low, there are slightly more cases in which the

first query by a vehicle fails due to the range being too short to reach all vehicles in the

delivery area. For transmission powers of 10dBm or above, the results are roughly the

same in all cases. The recommended class for use of Vertigo for intersection management

is therefore Class B, though Class A is sufficient.

6.4 Discussion

The Vertigo communication model offers rigorous safety guarantees that may come at the

expense of the progress vehicles make in traffic. Vehicles should treat a geocast as having

failed when insufficient information is available to confirm its success. This gives rise to

the question whether and under what conditions it is feasible to implement the Vertigo

model in such a way that it achieves success in a real scenario, and whether the achieved

rate of success is sufficient to support a real application. The experiments presented in

this Chapter show that in the intersection scenario, 70% or more of queries succeed, if

the maximum range of LIDAR sensors is 30m or higher, the position inaccuracy bound

is 2m or less, and the transmission power 1mW or higher. Even at success rates as low

as 40%, the coordination protocol can sustain high rates of progress with a LIDAR range

of 25m or higher, and a position inaccuracy bound of 3m or less, at the cost of increased

network overhead. Vertigo can scale to dense traffic flows without substantial impact to

success rates. It is helped by the fact that the number of vehicles that can participate

in a query is bounded by physical constraints. When omission failures occur, channel
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overhead increases substantially, but not to the point where it saturates the channel.

Importantly, the coordination protocol using Vertigo outperforms traffic lights as an

intersection management solution by increasing the traffic flow by ∼ 25% and reducing

expected and worst-case travel time by as much as 40%. These results are comparable to

work by [Dresner 08] on centralized intersection management, while providing stronger

safety guarantees, particularly robustness to omission failures. While improving traffic

flow is not a particular goal of this thesis, these results legitimize the use of cooperative

automated driving for that purpose, and more importantly, they show that the success

rate achieved by Vertigo in this scenario is sufficiently high for building a cooperative

automated driving system that can outperform an existing traffic management solution.
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Chapter 7

Conclusions

As the closing part of this thesis, the main contributions and future work items are

summarized.

7.1 Contributions

The primary contribution of this thesis is the Vertigo communication model. Exist-

ing communication solutions for cooperative automated driving systems are not robust

to omission failures in broadcast or geocast, despite the strict safety requirements of

automated driving. The Vertigo communication model specifies interfaces and data

structures for geocast with reliable success confirmation in the presence of unbounded

omission failures by combining acknowledgements with reliable, spatio-temporal mem-

bership. The characteristics of the model make it feasible to implement and applicable

to the problem space.

Key to the Vertigo model is the use of membership tuples that define a relationship

between the identifiers of vehicles, space, and time. Membership tuples can be decayed to

125



derive information about the future from the past, merged to combine information from

multiple sources and multiple points of time, generated using positioning and ranging

sensors, and shared over a wireless network. Using membership tuples, a complete view

of all vehicles that could be in a given area at a given time can be obtained. The Vertigo

model defines a geocast operation for sending a message to all vehicles in a target area

at a target time, to which those vehicles can respond. The sender of the geocast can

collect responses and finally obtain the result of the geocast, which uses membership

and the set of responders to confirm whether all vehicles in the target area at the target

time received the message.

The feasibility of implementing the Vertigo model is demonstrated through an im-

plementation using sensing capabilities that were already present in automated vehicles

8 years before this thesis was written [Buehler 07]. An important part of the implemen-

tation is a set of geometric algorithms that implement operations on areas relative to a

road map. Algorithms are defined for containment, union, and shifting the boundaries

of the area. These algorithms implement the operations on membership tuples required

by the model, as well as operations for generating the delivery area of a geocast, and

evaluating the success condition. To generate membership tuples, a transformation from

LIDAR beams to a one-dimensional empty area is defined, taking position inaccuracy

into consideration. Beaconing is used to share membership tuples in such a way that

receivers can form a membership view for the area around them. Filtered broadcast and

delayed unicast are used to implement geocast with responses. The feasibility of using

the provided implementation to achieve successful queries in an actual coordination sce-

nario is demonstrated through a series of simulations. The minimum required LIDAR

range in the scenario to achieve maximal traffic rates was found to be 25m and position

inaccuracy up to 3m can be tolerated. Even for high traffic densities and different trans-
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mission powers, overhead remains low enough not to stature the channel and maintain

a high rate of progress.

The applicability of the Vertigo model is demonstrated through its use in a coordina-

tion protocol for coordinating arbitrary intersections. The protocol is based on a model

of tracks, interconnected line strings. Where tracks intersect, a conflict area exists. The

protocol enables a vehicle to obtain an allocation for entering into a set of conflict areas

defined by a (conflict) trajectory. The geocast operation from the Vertigo model is used

to send an allocation request to a target area containing all vehicles who might have, or

might be competing for, an allocation for the same conflict areas. If all vehicles in the

target area accept or tentatively accept the allocation request, the sender may proceed

into the conflict areas, provided that all vehicles that tentatively accepted the alloca-

tion have passed or released their allocation. An allocation is committed if the vehicles

drives into a designated commit area within the time frame obtained in the allocation.

The commit protocol is made robust to vehicles leaving an area without communication

through the use of membership tuples. The applicability of the Vertigo model is further

demonstrated by the fact that success rate achieved by the Vertigo implementation is

high enough for the coordination protocol to outperform conventional traffic manage-

ment by increasing the maximum rate of traffic over the junction by roughly 25%, and

reducing the median travel time by up to 40%. These results are comparable to central-

ized intersection management approaches, but achieved in a way that is decentralized

and robust to omission failures.
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7.2 Future Work

The Vertigo communication model lays the foundation for a new class of coordination

protocols for cooperative automated vehicle that, unlike previous protocols, can achieve

safety in the presence of unbounded omission failures. New protocols are needed to sup-

port coordination scenarios such as roundabouts, overtaking, intersections with priority

rules, lane merging, and platooning. A general-purpose protocol that supports each of

these scenarios might also be feasible. Vertigo can potentially be used as the basis for pro-

tocols for traffic management of an entire city or highway network. Novel coordination

models and protocols may be necessary to ensure and optimize progress across multiple

intersections and roundabouts to avoid creating deadlocks. The roundasim simulator

can be used to evaluate the protocols and Vertigo implementation in these large-scale

scenarios, and find conditions under which success is achievable across a wider range of

scenarios and parameters. The results found using roundasim in small-scale scenarios

should be validated against real-world experiments.

Various improvements can be made to the Vertigo implementation, in particular to

reduce reliance on sensor accuracy, and support three-dimensional sensing. The current

implementation assumes vehicles drive in a perfect two-dimensional plane with regards to

LIDAR sensors. In reality, vehicles may wobble, roads are not perfectly flat, and vehicles

and obstacles may have irregular shapes. Distance measurements are dependent on the

orientation of the vehicle in three-dimensional space and may be overestimated. To deal

with this problem, more sensors and processing algorithms are needed to detect and

correct for the slope of the road. Delay and noise in LIDAR measurements is currently

not considered, nor is inaccuracy in the orientation of the vehicle and the sensors. These

could be taken into account by shrinking the polygon representing the known empty
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area. The effects of clock inaccuracy and road map inaccuracy also need to be studied

and possibly made explicit.

One of the biggest drawbacks of the current Vertigo implementation is the need for

100% deployment. The presence of a vehicle (or other traffic participant) that does not

participate in the membership service or group communication protocol, is interpreted

as a failure to reach all vehicles in the area by the sender of a geocast. There are several

ways this problem might be dealt with. First of all, a coordination protocol could adapt

to the area that is covered by membership tuples, even if incomplete. The coordination

protocol in Chapter 5 is relatively simple, since it only considers success or failure of a

query. A more sophisticated algorithm could consider partial success. Additionally, the

implementation could take more physical restrictions than just the maximum speed into

account, and try to bound the impact of incompatible vehicles. A vehicle in the mem-

bership view could act as a gatekeeper that temporarily prevents incompatible vehicles

behind it from passing, to allow compatible vehicles to make progress. Incompatible

vehicles could also be tracked with more precision. Potentially, the number of vehicles

in an area can be known reliably, even if they are incompatible.

Many other solutions could be applied to deal with the partial deployment problem,

which, to some extent, is the problem of automated driving itself. Vertigo could be

used within a closed clusters of vehicles, either formed dynamically or enforced. Vehicles

could coordinate their actions using Vertigo within the cluster, whereas conventional

mechanisms are used when interacting with vehicles outside the cluster. A coordination

protocol using Vertigo could also interact with traffic management infrastructure that

controls regular traffic. Different slots of time or space could be allocated to compati-

ble and incompatible vehicles. Given the relatively modest requirements of the Vertigo

implementation in terms of sensing and communication capabilities compared to au-
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tonomous vehicles, Vertigo may one day be deployed as a software update in a world

where most vehicles have sensors for ranging, positioning, and orientation, and ad-hoc

networking.
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Appendix A

API Notation

To specify APIs, an abstract notion of events is used, written in bold. Input events

are generated by the application (control software), and trigger processing at and pass

data to the service implementing the model. Output events are generated by the service

and trigger processing at and pass data to the application. The definition also specifies

the data types of parameters of the events in terms of tuples and sets. The notation

composes sets and tuples of elements of a certain type, written with a capital letter,

and optionally a unique name, written in subscript. For example, a tuple written as

(target ∈ Area, ...) means the first element of the tuple has type Area and name target.

Below are some common types used to specify events.

Table A.1: API notation

type Message = (d ∈ Data,s ∈ Size).

Data = (b1 ∈ Byte, ..., bs ∈ Byte).

131



Byte ∈ {n : n ∈ N ∧ n < 256}.

Size ∈ N.

description Binary messages. The size limitation is an artefact of the

implementation.

type Address = (Byte1, Byte2, ..., Byte16).

description The globally unique network-layer address of the vehicle.

type Port ∈ {n : n ∈ N ∧ 0 < n < 65536}.

description The port identifies the endpoint on which the application

is listening for a request or response message. At most one

application can be listening on a port.

type IDdomain ∈ N.

description An identifier that is unique within domain.

type Time = R+.

description Point in time. A greater value means further into the future.
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Appendix B

Lower-layer APIs

The APIs defined in this appendix comprehensively specify the capabilities that the

computational environment in which a Vertigo implementation operates needs to offer,

apart from general purpose computing. In particular, APIs for ad-hoc networking, po-

sitioning, and radar are specified. The notation introduced in Appendix A is used to

specify the interfaces.

B.0.1 Ad-hoc networking API

Vertigo requires an API for communication over an ad-hoc network. The API defines

two transmission primitives: unicast and broadcast. Unicast uses a globally unique

address to send a message to a single node, while broadcast sends a message to all

nodes in the radio range of the sender. The receive primitive can be used to receive

broadcasts and unicasts from other vehicles. The primitives can be implemented on top

of an 802.11p [IEEE 10] network interface. The full specifications are given below:

Table B.1: Communication API specifications
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input broadcast(m ∈ Message) at vehicle with address source.

description The broadcast event triggers the communication service to send the

data in m over a radio. The communication service of vehicles that

successfully receive the message will trigger a receive(source,m) event.

There is no multi-hop forwarding involved.

input unicast(m ∈ Message, d ∈ Address) at vehicle with address source.

description The semantics of unicast are identical to that of broadcast, except the

receive(source,m) event will only trigger at a vehicle that receives the

message and has address d.

output receive(source ∈ Address,m ∈ Message) at vehicle with address d.

description The receive event is triggered by the communication service at vehi-

cles that successfully receive a message from another vehicle. It is not

triggered at the vehicle that sent the message.

There are several communication techniques that may be very beneficial, but that

are not currently considered in the design. In particular, the use of directed anten-

nas [Gharavi 09] and transmission power control [Torrent-Moreno 06] are currently not

considered. Future extensions of Vertigo may take advantage of these techniques, but

they are not currently within the scope of the design.

B.0.2 Sensor APIs

Vertigo relies on the presence of several types of sensors. This section specifies the

interfaces of the sensors that the Vertigo implementation relies on. The interfaces can

be provided by devices that are commonly used in automated vehicles.
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B.0.2.1 Position sensor

One of the most basic and important sensors available on a vehicle is a positioning

sensor. Position can be provided by a satellite system like the Global Positioning System

or Galileo, and can be augmented with inertial sensors, knowledge of driving actions, or

relative positioning. For the sake of simplicity, the coordinates are assumed to be in a

Cartesian system in which distance can be calculated using the Pythagorean theorem

such as Universal Transverse Mercator [Karney 11]. The positioning sensor produces

a two-dimensional point and a radius that indicates how far the actual position of the

vehicle might lie from the point.

Table B.2: Position sensor specifications

output position(p ∈ Point2D, α ∈ R+).

description The position event is triggered periodically and produces a two-

dimensional point p indicating the approximate position of the vehicle

and and an accuracy value α indicating the radius of a circle centred in

p, in which the vehicle is guaranteed to be.

type Point2D = (x ∈ Easting, y ∈ Northing).

Easting, Northing ∈ R.

description Describes a two-dimensional point.

The accuracy value may vary depending on how the sensor is implemented and how

much information it has available (e.g. the number of satellites from which a signal

is received). A simple implementation would use a constant value. The guarantees

provided by Vertigo are partially dependent on the validity of the accuracy value, which

must thus be pessimistic. The impact of the inaccuracy bound is discussed in Chapter 6.
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B.0.2.2 Orientation sensor

The orientation sensor is needed to interpret the results of the ranging sensors, which

produce beams whose orientation needs to be determined using the orientation sensor.

Table B.3: Orientation sensor specifications

output orientation(o ∈ Angle).

Angle = {a : a ∈ R,−π ≤ a ≤ π}.

description The orientation event is periodically triggered and produces a value o

indicating the approximate orientation of the vehicle in two dimensions

where 0 is East and π is North.

A compass or repeated position measurements can be used to provide the orienta-

tion sensor interface. A GPS compass uses two receivers to provide highly accurate

orientation within 1◦ [Tu 97]. Given that such a high accuracy can be achieved with

basic off-the-shelf hardware, inaccuracy of the orientation sensor is not considered by

the Vertigo implementation.

B.0.2.3 Ranging sensor

The Vertigo implementation uses a ranging sensor to measure areas in which there are

no other vehicles. The output of the ranging sensor is represented as a set of beams at

fixed angles that are relative to the orientation of the vehicle.

Table B.4: Ranging sensor specifications

output ranges(s ∈ IDsensors, B ⊂ Beam).
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description The ranges event is periodically triggered and produces a set of beams

B from a sensor with identifier s. The relative position, orientation,

maximum range, angular resolution, and angular range of sensor s are

known to applications.

type Beam = (d ∈ R+, a ∈ Angle).

description A beam represents a distance measurement of length d at relative angle

a from the sensor. Inaccuracy of individual measurements is reflected

by a reduction in distance d.

The ranging sensor can be provided by a LIDAR, such as those produced by SICK [SICK

AG 13] and Velodyne [Velodyne 13]. Some processing may be required to translate an

array of three-dimensional beams into a two-dimensional plane.
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Appendix C

Road map specifications

The main components of Vertigo each make use of a road map and thus require a service

that can be queried for a relevant section of the road map. The representation of the road

map is assumed to be common among all vehicles, and known in advance. This appendix

specifies the road map and area representations used in the Vertigo implementation.

C.1 Road segment graph

The road map used by Vertigo implementation is represented as a graph with geomet-

ric attributes. It provides a global frame of reference for geometric information, and

defines restrictions which the Vertigo implementation uses to reason about the poten-

tial worst-case behaviour of unknown vehicles. The road map is divided into segments

(named ’RoadSegment’). The segments represent edges in a graph, in which the nodes

(named ’Connector’) represent the possibility for vehicles to move from one segment to

another. The individual segments and connectors have globally known identifiers that

can be referred to in messages. This helps to avoid having to encode complex geometric
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information in messages. The formal specifications of the road map representation using

the notation introduced in Appendix A are given below.

Table C.1: Road map specifications

output map(S ⊂ RoadSegment, C ⊂ Connector, v ∈ IDmaps ).

description The road map service provides a set of road segments S and a set of

connectors C, belonging to a road map with version number v.

type RoadSegment = (

id ∈ IDsegments,

from ∈ IDconnectors,

to ∈ IDconnectors,

path ∈ Polyline,

surface ∈ Polyline,

direction ∈ Direction,

vmax ∈ R+,

omax ∈ Angle).

Direction = {normal, both, reverse}.

Angle = {a : a ∈ R,−π ≤ a ≤ π}.

description A road segment represents part of a road. Two road segments are con-

nected if one of the connector identifiers, from or to, of one segment is

equal to one of the connector identifiers of the other road segment.
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While on the road segment, the speed of a vehicle may not be higher

than vmax and its orientation may differ no more than omax from the line

segment(s) of path. The surface polygon defines the two-dimensional

shape of the road segment.

type Connector = (

id ∈ IDconnectors,

segments ⊂ IDsegments).

description A connector either represents a closed end of a road segment if

|segments| = 1 or a connection to one or more other road segments

if |segments| > 1. The existence of a connector for which segments con-

tains road segment identifiers a and b is a pre-condition for vehicles being

able to move between these two segments. However, other constraints

apply which may restrict such movements (e.g. the segments may be

uni-directional).

type Polyline = (p1 ∈ Point2D, ..., pn ∈ Point2D).

description Describes a sequence of points, representing connected line segments.

The line segments of a single polyline may not intersect. If the polyline

represents a polygon, the first and last point need to be identical.

As shown in the definition, road segments have a path and a surface associated with

them. These are used to define and reason about geometric restrictions to the vehicle.

Road segments also have attributes describing restrictions on speed, orientation, and

direction. The restrictions are as follows:

� While on a road segment, the two-dimensional position of the vehicle is within the

two-dimensional surface of the road segment.
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� While on a road segment, the two-dimensional velocity of the vehicle may not

exceed the vmax of the segment.

� While on a road segment, the one-dimensional velocity of the vehicle (or rather,

the projection of its position on path) may not exceed the vmax of the segment.

� While on a road segment, the one-dimensional velocity of the vehicle may not

exceed the vmax of the segment (defined in Section C.2).

� While on a road segment, the orientation of a vehicle may not differ more than

omax from the orientation of the line segment(s) of path on which the projection

of the position of the vehicle lies.

� While on a road segment, a vehicle may only follow the path in the direction given

by direction.

� A line drawn perpendicular to a line segment on path may only intersect surface

once.

The primary purpose of the restrictions is to allow the membership service to compute

decay. The validity of the constraints in the road map is critical to the guarantees offered

by Vertigo. For example, if vehicles could exceed the maximum velocity, the membership

service may falsely conclude that an area is void of unknown vehicles based on the

maximum velocity constraint. As a result, Vertigo may falsely conclude that all vehicles

in the delivery area received the message. On the other hand, a very conservative (high)

maximum velocity would cause decay to occur more rapidly, and increase information

gathering overhead and potentially a drop in success rate.

The restrictions are effectively a contract between the controllers of vehicles and Ver-

tigo. As long as vehicles honour the contract, Vertigo can provide success confirmation
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reliably. To make such a contract feasible, restrictions can made very permissive. As

vehicles become more automated, they can be made to follow stricter bounds, which

would provide Vertigo with better upfront knowledge about the behaviour of vehicles,

which may result in a better success rate and reduced overhead.

For simplicity, only two-dimensional geometry is considered in the road map rep-

resentation. Since vehicles always stay on the surface, two-dimensional geometry is

sufficient to enforce safety guarantees. Distance in terms of altitude does not need to be

considered. The two-dimensional geometries of road segments are allowed to overlap to

represent bridges and tunnels, provided that no connector exists between them.

C.2 Position specification

Vertigo mostly interacts with the part of the road map that represents the roads in

the proximity of the vehicle. To be able to find this part in a practical manner, the

position of the vehicle should be augmented with the identifier of the road segment the

vehicle is currently on. The interface used by Vertigo for positioning provides augmented

position both in a one-dimensional and two-dimensional form. The one-dimensional form

is represented as an offset and the identifier of the road segment that the vehicle is on.

The two-dimensional form is represented as a two-dimensional point and the identifier

of the road segment that the vehicle is on. The type definitions are given below.

Table C.2: Position specifications

type Position1D = (offset ∈ R+, segment ∈ IDsegments).

description Describes the position of a vehicle as a point obtained by walking a

distance given by offset along the path of road segment segment in the
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order of the points. The offset may not be greater than the total length

of the path.

type Position2D = (point ∈ Point2D, segment ∈ IDsegments).

description Describes the position of a vehicle as a two-dimensional point point on

a road segment with identifier s.

To simplify algorithms, and allow compact messages, two-dimensional geometry can

be converted to one-dimensional geometry. A one-dimensional position is represented as

an offset on the path of a road segment. One-dimensional speed is represented is the

increase or decrease in offset per time unit. A one-dimensional position can be converted

into a two-dimensional position by walking a distance of offset along the path from the

start. A two-dimensional position can be converted to a one-dimensional position by

finding the offset of the closest point on the path.

Which road segment the vehicle is on is assumed to be known reliably at the start. In

a real setting, a method for transitioning to autonomous mode [Prada Gomez 11] could

be used for this purpose. From that point forward, the positioning system periodically

checks whether the two-dimensional position of the vehicle with respect to the surface

of the road segment the vehicle is on and other road segments that share a common

connector. The position of a vehicle needs to stay within the surface polygon of a road

segment, and may not move from one road segment to the other unless the road segments

share a connector and their surface polygons share at least one surface segment.

C.3 Area specification

Vertigo uses two different one-dimensional representations of areas that are relative to

the paths of road segments in the road map. Both representations specify a section
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of the road map, but one is optimized for compactness in message, and the other for

reasoning and transformations. This section specifies both representations and define the

translations between them. The two representations of an area provide a framework for

geographically-defined communication. The area representations are used for defining

the target area of a geocast, the delivery area in geocast messages, and the membership

area in membership tuples.

C.3.1 Boundary-based representation

In messages, areas are represented as a part of the road map that is sealed off by a set of

one-dimensional boundaries on the paths of road segments. The number of boundaries

needed to represent an area depends on the size of the area and the complexity of the

road map. For example, an area covering a long stretch of highway can be represented by

boundaries at a starting and ending offset on the highway, and boundaries for all exits and

entries in between. An area covering a simple four-way intersection can be represented

by 4 boundaries. The benefit of the boundary representation, apart from compactness,

is that the borders of the area are explicit, which is used to apply transformations to

shrink and expand the area from the borders. The boundary representation is defined

as follows:

Table C.3: Area representation for messages

type BoundaryArea1D ⊂ Boundary1D.

description In messages, an area is defined by a set of one-dimensional boundaries.

The boundaries must seal off part of the road network. If not, the area

is invalid.
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type Boundary1D = (

segment ∈ IDsegments,

offset ∈ R+,

inclusive ∈ Inclusive1D).

Inclusive1D = {front, back}.

description A one-dimensional boundary is defined by a distance offset along the

path of road segment segment, inclusive indicates whether the part of

the road behind or in front of the boundary is included in the area, given

the direction of the path of the road segment.

The boundary representation is used to compactly represent areas in messages. How-

ever, it is not a practical representation for testing presence or transformations on the

area. Given a set of boundaries, it is not obvious whether a path offset on a given road

segment is included in the delivery area or not. To be able to perform such reasoning in

a practical manner, the boundaries can be translated to a set of non-overlapping road

segment ranges.

C.3.2 Range-based representation

To implement merging and containment operations efficiently, an area can be repre-

sented as a set of one-dimensional ranges of road segments. The ranges are defined by

a start and an end offset on the path of a road segment, with end > start. Tests and

transformations on the area can be broken down into tests and operations on ranges. For

example, testing whether a point with path offset o on road segment i is included in the

area can be done by looking up the set of ranges Ri for road segment i and evaluating

whether ∃r ∈ Ri : r.start ≤ o ≤ r.end holds true. The ranges are indexed by road
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segment identifier, such that the expected look up time for a set of ranges on a road

segment is constant. The full specifications of the range-based area representation are

as follows:

Table C.4: Internal area representation

type RangeArea1D ⊂ RoadSegmentRange1D.

description A range-based area is defined as a set of non-overlapping road segment

ranges. Points that fall within any of the ranges are included in the area.

For efficiency, the ranges can by indexed by road segment identifier.

type RoadSegmentRange1D = (

start ∈ R+,

end ∈ R+,

segment ∈ IDsegments) with start < end.

description A road segment range is defined as the start offset and the end offset

on the path of road segment segment. Points in between start and end

are included in the range.

C.3.3 Boundaries to ranges translation

When a Vertigo receives a message containing a boundary representation of an area, it

first translates it into the range-based representation using the boundariesToRanges

function. To do so, it performs a breadth-first search (BFS) on the road map from a

selected starting boundary to the other boundaries with which it forms a contiguous

area. This process is repeated until all boundaries were either selected as a starting

point or found in the search.

The search starts in the inclusive direction of the starting boundary. If another
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boundary on the same road segment exists in the opposite direction, the range between

the boundaries is added to the set of ranges and the search is done. If no such boundary

exist, a range between the boundary and the other end of the path is included in the set

and the search continues from the connector. From a connector, each of the connected

road segments are traversed. If no boundary exists on a road segment, a range is added

to the set with start = 0, end = length(path), and the connector on the other end of

the road segment is included in the BFS queue. If a boundary does exist, a range from

the connector to the boundary is added to the set and the search continues to traverse

other road segments. If all road segments are traversed and the queue is empty, the

search is done. For completeness, the full algorithm is given below. When the algorithm

terminates, result contains the set of ranges following the previously defined format.

func boundariesToRanges(Ab ∈ BoundaryArea1D).

Ar ← ∅

unusedBoundaries← ∅

groupedBoundaries← ∅

for all boundary ∈ Ab do

groupedBoundaries[boundary.segment]← groupedBoundaries[boundary.segment] ∪

{boundary}.

end for

while |unusedBoundaries| > 0 do

rootBoundary← removeAny(unusedBoundaries).

segment← segments[rootBoundary.segment].

boundaryGroup← groupedBoundaries[rootBoundary.segment].

closestBoundary← findNextBoundary(rootBoundary, boundaryGroup).
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if closestBoundary then

Ar ← Ar ∪ {(min(rootBoundary.offset, closestBoundary.offset),

max(rootBoundary.offset, closestBoundary.offset),

rootBoundary.segment)}.

unusedBoundaries← unusedBoundaries \ {closestBoundary}.

else

bfsQueue← [].

visitedConnectors← ∅.

if rootBoundary.inclusive = front then

Ar ← Ar ∪ {(rootBoundary.offset,

length(segment.path),

rootBoundary.segment)}.

push(bfsQueue, segment.to).

visitedConnectors← visitedConnectors ∪ {segment.to}.

else

Ar ← Ar ∪ {(0, rootBoundary.offset, rootBoundary.segment)}.

push(bfsQueue, segment.from).

visitedConnectors← visitedConnectors ∪ {segment.from}.

end if

while |bfsQueue| > 0 do

connectorID← pop(bfsQueue).

connector← connectors[connectorID].

for all segmentID ∈ connector.segments do

segment← segments[segmentID].

if connectorID = segment.from then
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otherConnectorID← segment.to.

arrivalOffset← 0.

else

otherConnectorID← segment.from.

arrivalOffset← length(segment).

end if

if otherConnectorID /∈ visitedConnectors then

boundaryGroup← groupedBoundaries[rootBoundary.segment].

closestBoundary← findNextBoundary(rootBoundary, boundaryGroup).

if closestBoundary then

Ar ← Ar ∪ {(min(arrivalOffset, closestBoundary.offset),

max(arrivalOffset, closestBoundary.offset),

segmentID)}.

unusedBoundaries← unusedBoundaries \ {closestBoundary}.

else

Ar ← Ar ∪ {(0, length(segment), segmentID)}.

push(bfsQueue, otherConnectorID).

visitedConnectors← visitedConnectors ∪ {otherConnectorID}.

end if

end if

end for

end while

end if

end while
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return Ar

end boundariesToRanges.

A weakness of the translation using BFS is that it is possible for a malicious node

to specify a set of boundaries that does not fully seal off an area. In this case, the

BFS algorithm might not terminate until it has traversed the entire road network. A

practical solution to this problem is to limit the diameter of the delivery area graph.

The algorithm can keep track of the number of vertices it traversed to reach a given

node. For the scope of this thesis, non-malicious implementations are assumed.

C.3.4 Ranges to boundaries translation

When a message containing an area is constructed, the range-based representation needs

to be translated into the boundary-based representation using the rangesToBoundaries

function. In this case, the main problem is to determine whether or not the start or end

of a range is a boundary. For a given range (start, end, id), if start > 0 then a boundary

(id, start, front) is added to the set. If end < length(path) for the path of the road

segment with identifier id, then a boundary (id, end, back) is added to the set. In the

alternative case, a range touches the from connector of a road segment if start = 0,

and a range touches the to connector of a road segment if end ≥ length(path). If a

range touches a connector, the algorithm determines if each connecting road segment

has a range that touches the same connector using the isConnectorCovered func-

tion. If not, a boundary is placed at the connector - (id, 0.0, front) for connector from,

(id, length(path), back) for connector to. The full algorithm is given below.

func rangesToBoundaries(Ar ∈ RangeArea1D).

Ab ← {}.
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for all r ∈ Ar do

segment← segments[r.segment].

if r.start > 0||¬isConnectorCovered(segment.from) then

Ab ← Ab ∪ {(segment.id, r.start, front)}.

end if

if r.end < length(segment.path)||¬isConnectorCovered(segment.to) then

Ab ← Ab ∪ {(segment.id, r.end,back)}.

end if

end for

return Ab.

end rangesToBoundaries.
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